Relaxations for Production Planning Problems with Increasing By-products

Srikrishna Sridhar, Jeff Linderoth, James Leudtke

University of Wisconsin-Madison

1 Feb 2012

つくい

• Problem Description

• Production process involves desirable & undesirable products.

a mills.

A \sim 3 로

 $2Q$

≣

• Problem Description

• Production process involves desirable & undesirable products.

 \leftarrow \Box

A

 $2Q$

三

• Ratio of by-products to total production increases monotonically.

• Problem Description

• Production process involves desirable & undesirable products.

 \leftarrow \Box

- Ratio of by-products to total production increases monotonically.
- Non-convex problem.

• Problem Description

• Production process involves desirable & undesirable products.

 Ω

- Ratio of by-products to total production increases monotonically.
- Non-convex problem.

• Contributions

• New discrete time MINLP formulation.

• Problem Description

• Production process involves desirable & undesirable products.

 Ω

- Ratio of by-products to total production increases monotonically.
- Non-convex problem.

• Contributions

- New discrete time MINLP formulation.
- MIP Approximation & Relaxation schemes.

• Problem Description

• Production process involves desirable & undesirable products.

へのへ

- Ratio of by-products to total production increases monotonically.
- Non-convex problem.

• Contributions

- New discrete time MINLP formulation.
- MIP Approximation & Relaxation schemes.

• Performance evaluation

[Problem Description](#page-7-0)

(ロ) (d)

一 星下

∢ 重 **IN** È

 299

The production process creates a mixture of useful products \mathcal{P}^+ and by-products \mathcal{P}^- .

a mills.

100 k

 \leftarrow \equiv \rightarrow

∢ 重 ≯

扂

- The production process creates a mixture of useful products \mathcal{P}^+ and by-products \mathcal{P}^- .
- \bullet Decisions span a planning horizon \mathcal{T} .

- The production process creates a mixture of useful products \mathcal{P}^+ and by-products \mathcal{P}^- .
- Decisions span a planning horizon T .
- Discrete decisions determine the start time of the production process.

- The production process creates a mixture of useful products \mathcal{P}^+ and by-products \mathcal{P}^- .
- Decisions span a planning horizon T .
- Discrete decisions determine the start time of the production process.

へのへ

Continuous decisions determine the production profile evaluated by production functions $f(\cdot)$ and $g_p(\cdot)$.

• Production function $f(\cdot)$ is a concave function that determines the maximum production rate as a function of total production.

 $2Q$

后

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

 \leftarrow \cap \rightarrow \leftarrow \cap \rightarrow

- Production function $f(\cdot)$ is a concave function that determines the maximum production rate as a function of total production.
- Product fraction functions $g_p(\cdot)$ evolve monotonically as a function of the total production.

つへへ

- Production function $f(\cdot)$ is a concave function that determines the maximum production rate as a function of total production.
- Product fraction functions $g_p(\cdot)$ evolve monotonically as a function of the total production.

Srikrishna Sridhar, Jeff Linderoth, James Leudtke [SILO Seminars: Feb 1, 2012](#page-0-0)

- Production function $f(\cdot)$ is a concave function that determines the maximum production rate as a function of total production.
- Product fraction functions $g_p(\cdot)$ evolve monotonically as a function of the total production.

 Ω

Srikrishna Sridhar, Jeff Linderoth, James Leudtke [SILO Seminars: Feb 1, 2012](#page-0-0)

(Loading...)

メロメ メ都 メメ きょくきょ

È

 299

$$
v(t) = \int_0^t x(s) \mathrm{d} s
$$

$$
v(t) = \int_0^t x(s) \mathrm{d} s
$$

Mixture production rate is limited by production function $f(\cdot)$ $x(t) \leq f(v(t))$

④目的 ④目的

$$
v(t) = \int_0^t x(s) \mathrm{d} s
$$

Mixture production rate is limited by production function $f(\cdot)$

$$
x(t)\leq f(v(t))
$$

Product production rates $y_p(t)$ calculated by fraction functions $g_p(\cdot)$

$$
y_p(t) = x(t) g_p(v(t))
$$

$$
v(t) = \int_0^t x(s) \mathrm{d} s
$$

Mixture production rate is limited by production function $f(\cdot)$

$$
x(t)\leq f(v(t))
$$

Product production rates $y_p(t)$ calculated by fraction functions $g_p(\cdot)$

$$
y_p(t) = x(t) g_p(v(t))
$$

Production profiles are active only after the start time $z(t)$

$$
v(t) = 0 \quad \forall t < z(t) \quad \text{and} \quad v(t) = 0
$$

へのへ

[Discrete time MINLP formulations](#page-21-0)

イロト イ部 トイヨ トイヨト

 \equiv

 299

Past models have proposed a natural discretization of this continuous time model.

K ロ ▶ K 伊 ▶

- 4 周 ド 3 周 ド

 $2Q$

扂

Past models have proposed a natural discretization of this continuous time model.

K ロ ▶ K 伊 ▶

- 4 周 ド 3 周 ド

 $2Q$

扂

Past models have proposed a natural discretization of this continuous time model.

 v_t Cumulative production up to time period $t \in \mathcal{T}$.

つへへ

 \leftarrow

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation

\n
$$
(F)
$$
\n
$$
v(t) = \int_0^t x(s) \, ds
$$
\n
$$
x(t) \le f(v(t))
$$
\n
$$
y_p(t) = x(t) \, g_p(v(t))
$$
\n
$$
v(t) = 0 \quad \forall t < z(t)
$$
\n
$$
z(t) : \mathcal{T} \to \{0, 1\}, \text{increasing}
$$

- v_t Cumulative production up to time period $t \in \mathcal{T}$.
- x_t Mixture production during time period $t \in \mathcal{T}$.

へのへ

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation (F)

$$
v(t) = \int_0^t x(s) \mathrm{d} s
$$

$$
x(t)\leq f(v(t))
$$

$$
y_p(t) = x(t) g_p(v(t))
$$

$$
v(t) = 0 \quad \forall t < z(t)
$$

$$
z(t): \mathcal{T} \to \{0,1\}, \text{increasing}
$$

- v_t Cumulative production up to time period $t \in \mathcal{T}$.
- x_t Mixture production during time period $t \in \mathcal{T}$.
- $y_{p,t}$ Product $p \in \mathcal{P}$ production during time period $t \in \mathcal{T}$.

- 467

つへへ

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation
$$
(F)
$$

$$
v(t) = \int_0^t x(s) \mathrm{d} s
$$

$$
x(t)\leq f(v(t))
$$

$$
y_p(t) = x(t) g_p(v(t))
$$

$$
v(t) = 0 \quad \forall t < z(t)
$$

$$
z(t): \mathcal{T} \to \{0,1\}, \text{increasing}
$$

- v_t Cumulative production up to time period $t \in \mathcal{T}$.
- x_t Mixture production during time period $t \in \mathcal{T}$.
- $y_{p,t}$ Product $p \in \mathcal{P}$ production during time period $t \in \mathcal{T}$.
	- z_t Facility on/off decision variable.

つへへ

K ロ ▶ K 倒 ▶

Past models have proposed a natural discretization of this continuous time model.

Srikrishna Sridhar, Jeff Linderoth, James Leudtke [SILO Seminars: Feb 1, 2012](#page-0-0)

Past models have proposed a natural discretization of this continuous time model.

Past models have proposed a natural discretization of this continuous time model.

Past models have proposed a natural discretization of this continuous time model.

Past models have proposed a natural discretization of this continuous time model.

Past models have proposed a natural discretization of this continuous time model.

Formulation F_1

How much of product p is produced up to time t ?

 290

Formulation F_1

How much of product p is produced up to time t ?

Formulation F_1

How much of product p is produced up to time t ?

$$
w_{p,t} \stackrel{\text{def}}{=} \sum_{s \leq t} y_{p,s}
$$
\n
$$
= \sum_{s \leq t} x_s g_p(v_{s-1})
$$
\n
$$
v_t = \sum_{s=0}^t x_s
$$
\n
$$
v_t = \sum_{s=0}^t x_s
$$
\n
$$
x_t \leq \Delta_t f(v_{t-1})
$$
\n
$$
y_{p,t} = x_t g_p(v_{t-1})
$$
\n
$$
y_{p,t} = x_t g_p(v_{t-1})
$$
\n
$$
v_t \leq M g_t
$$
\n
$$
v_t \leq \Delta_t f(v_{t-1})
$$
\n
$$
v_t \leq M g_t
$$
\n
$$
v_t \geq M g_t
$$

Srikrishna Sridhar, Jeff Linderoth, James Leudtke [SILO Seminars: Feb 1, 2012](#page-0-0)

Formulation F_1 formulation

How much product is produced up to time t ?

$$
w_{p,t} \stackrel{\text{def}}{=} \sum_{s \leq t} y_{p,s} \qquad \text{formulation (F1)}
$$
\n
$$
= \sum_{s \leq t} x_s g_p(v_{s-1}) \qquad \qquad v_t = \sum_{s=0}^t x_s
$$
\n
$$
v_t = \sum_{s=0}^t x_s
$$
\n
$$
x_t \leq \Delta_t f(v_{t-1})
$$
\n
$$
y_{p,t} = x_t g_p(v_{t-1})
$$
\n
$$
y_{p,t} = x_t g_p(v_{t-1})
$$
\n
$$
y_{p,t} = x_t g_p(v_{t-1})
$$
\n
$$
v_t \leq M z_t
$$
\n
$$
z_t \geq z_{t-1}
$$

Discrete time

 290

Srikrishna Sridhar, Jeff Linderoth, James Leudtke [SILO Seminars: Feb 1, 2012](#page-0-0)

Can we do better?

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

目

 299

Can we do better?

Can we calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t ?

Can we do better?

Can we calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t ?

Can we do better?

Can we calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t ?

$$
w_{p,t} = \int_0^t y_p(s) \mathrm{d} s
$$

Continuous time formulation (F) $v(t) = \int_0^t$ 0 $\mathsf{x}(\mathsf{s})\mathrm{d}\mathsf{s}$ $x(t) \leq f(v(t))$ $y_p(t) = x(t) g_p(v(t))$ $v(t) = 0 \quad \forall t < z(t)$ $z(t): \mathcal{T} \rightarrow \{0,1\}$, inc

メミメ メミメ

+ n →

Can we do better?

Can we calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t ?

$$
w_{p,t} = \int_0^t y_p(s) \, \mathrm{d} s
$$
\n
$$
= \int_0^t x(s) g_p(v(s)) \, \mathrm{d} s
$$

Continuous time formulation (F) $v(t) = \int_0^t$ 0 $\mathsf{x}(\mathsf{s})\mathrm{d}\mathsf{s}$ $x(t) < f(v(t))$ $y_p(t) = x(t) g_p(v(t))$ $v(t) = 0 \quad \forall t < z(t)$ $z(t): \mathcal{T} \rightarrow \{0,1\}$, inc

- 4 重 8 - 4 重 8

4 m k

 \leftarrow \leftarrow \leftarrow

Can we do better?

Can we calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t ?

$$
w_{p,t} = \int_0^t y_p(s)ds
$$

=
$$
\int_0^t x(s) g_p(v(s))ds
$$

=
$$
\int_0^{v_t} g_p(v)dv
$$

Continuous time formulation (F) $v(t) = \int_0^t$ $\mathsf{x}(\mathsf{s})\text{d}\mathsf{s}$ 0 $x(t) < f(v(t))$ $y_p(t) = x(t) g_p(v(t))$ $v(t) = 0 \quad \forall t < z(t)$ $z(t): \mathcal{T} \rightarrow \{0,1\}$, inc a mills. メタメメ ミメメ ミメ

Can we do better?

Can we calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t ?

$$
w_{p,t} = \int_0^t y_p(s)ds
$$

=
$$
\int_0^t x(s) g_p(v(s))ds
$$

=
$$
\int_0^{v_t} g_p(v)dv
$$

$$
\stackrel{\text{def}}{=} h_p(v_t)
$$

Continuous time formulation (F) $v(t) = \int_0^t$ 0 $\mathsf{x}(\mathsf{s})\mathrm{d}\mathsf{s}$ $x(t) < f(v(t))$ $y_p(t) = x(t) g_p(v(t))$ $v(t) = 0 \quad \forall t < z(t)$ $z(t): \mathcal{T} \rightarrow \{0,1\}$, inc

- 4 重 8 - 4 重 8

 \leftarrow \leftarrow \leftarrow

• Integral of a non-increasing function is concave.

• Integral of a non-increasing function is concave.

• Integral of a non-decreasing function is convex.

Key Idea

- Integral of a non-increasing function is concave.
- Integral of a non-decreasing function is convex.
- Lets deal with $h_p(\cdot)$ instead of $g_p(\cdot)!$

What have we done so far ?

メロメ メ御 メメ きょ メモメ

重

What have we done so far ?

Srikrishna Sridhar, Jeff Linderoth, James Leudtke [SILO Seminars: Feb 1, 2012](#page-0-0)

Which formulation is better?

F ₁	F ₂
$v_t = \sum_{s=0}^t x_s$	$v_t = \sum_{s=0}^t x_s$
$x_t \leq \Delta_t f(v_{t-1})$	$x_t \leq \Delta_t f(v_{t-1})$
$y_{p,t} = x_t g_p(v_{t-1})$	$y_{p,t} = h_p(v_t) - h_p(v_{t-1})$
$v_t \leq M z_t$	$v_t \leq M z_t$
$z_t \geq z_{t-1}$	$z_t \geq z_{t-1}$

K ロ ⊁ K 伊 ⊁ K 店

∢ 重う

IN

重

Which formulation is better?

 \bullet F₂ is a more accurate formulation of F than F₁.

イロト イ部 トイヨ トイヨ トー

重

Which formulation is better?

- \bullet F₂ is a more accurate formulation of F than F₁.
- F₂ is computationally better because it deals with convex functions while F_1 deals with bivariate functions.

a mills.

A

∢ 重う

重

 299

Srikrishna Sridhar, Jeff Linderoth, James Leudtke [SILO Seminars: Feb 1, 2012](#page-0-0)

Mixed Integer Non-Linear Programs (MINLP)

... are slow and hard!

重

∢ 重 ≯

 4.17 ± 1.0

⊕ ▶ - 4 店 ト 299

Mixed Integer Non-Linear Programs (MINLP)

... are slow and hard!

つへへ

Why MINLP is like Cricket

- It goes on forever.
- May not produced a result.

But...the MILP force is here

We only need to approximate or relax univariate convex and concave functions.

a mills.

100 k

 $2Q$

∢ 重 ≯

Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations.[\[1\]](#page-111-0)

Srikrishna Sridhar, Jeff Linderoth, James Leudtke [SILO Seminars: Feb 1, 2012](#page-0-0)

E

Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations.[\[1\]](#page-111-0)

- Pros
	- 'Close' to a feasible solution of the MINLP formulation.

Srikrishna Sridhar, Jeff Linderoth, James Leudtke [SILO Seminars: Feb 1, 2012](#page-0-0)

Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations.[\[1\]](#page-111-0)

- Pros
	- 'Close' to a feasible solution of the MINLP formulation.
- Cons
	- Introduces additional SOS2 variables to branch on.

Srikrishna Sridhar, Jeff Linderoth, James Leudtke [SILO Seminars: Feb 1, 2012](#page-0-0)

Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations.[\[1\]](#page-111-0)

- Pros
	- 'Close' to a feasible solution of the MINLP formulation.
- Cons
	- Introduces additional SOS2 variables to branch on.
	- NOT a relaxation of the original formulation.

Srikrishna Sridhar, Jeff Linderoth, James Leudtke [SILO Seminars: Feb 1, 2012](#page-0-0)

Approximating $f(v_t)$

 $f(v_t) \approx \sum$ o∈O $\lambda_{t,o} f(a_o)$

メロト メ御 ドメ 老 トメ 老 トリ (者)

Approximating $f(v_t)$

メロト メ御 ドメ 老 トメ 老 トッ 差し

Approximating $f(v_t)$

$$
f(v_t) \approx \sum_{o \in \mathcal{O}} \lambda_{t,o} f(a_o)
$$

$$
1 = \sum_{o \in \mathcal{O}} \lambda_{t,o}
$$

Structure: Only two adjacent non zeros.

★ ロメ (4 御) > (唐) > (唐) → 唐

Approximating $f(v_t)$

$$
f(v_t) \approx \sum_{o \in \mathcal{O}} \lambda_{t,o} f(a_o)
$$

$$
1 = \sum_{o \in \mathcal{O}} \lambda_{t,o}
$$

Structure: Only two adjacent non zeros.

 $\{\lambda_{t,o}|\rho\in\mathcal{O}\}\in S$ 0S2

★ ロメ (4 御) > (唐) > (唐) → 唐

 299

Piecewise Linear Approximation (PLA)

Piecewise Linear Approximation (PLA)

$$
F_2
$$
\n
$$
v_t = \sum_{s=0}^t x_s
$$
\n
$$
x_t \le \Delta_t f(v_{t-1})
$$

Piecewise Linear Approximation (PLA)

$$
v_t = \sum_{s=0}^{t} x_s
$$

$$
v_t = \sum_{o \in O} B_o \lambda_{t,o}
$$

$$
x_t \leq \Delta_t \sum F_o \lambda_{t,o}
$$

o∈O

 2990

Piecewise Linear Approximation (PLA)

$$
F_2
$$
\n
$$
v_t = \sum_{s=0}^t x_s
$$
\n
$$
x_t \le \Delta_t f(v_{t-1})
$$
\n
$$
y_{p,t} = h_p(v_t) - h_p(v_{t-1})
$$

Piecewise Linear Approximation (PLA)

$$
v_t = \sum_{s=0}^{t} x_s
$$

\n
$$
v_t = \sum_{o \in \mathcal{O}} B_o \lambda_{t,o}
$$

\n
$$
x_t \leq \Delta_t \sum_{o \in \mathcal{O}} F_o \lambda_{t,o}
$$

\n
$$
y_{p,t} = w_{p,t} - w_{p,t-1}
$$

\n
$$
w_{p,t} = \sum_{o \in \mathcal{O}} H_{p,o} \lambda_{t,o}
$$

 2990
Piecewise Linear Approximation (PLA)

$$
F_2
$$
\n
$$
v_t = \sum_{s=0}^t x_s
$$
\n
$$
x_t \leq \Delta_t f(v_{t-1})
$$
\n
$$
y_{p,t} = h_p(v_t) - h_p(v_{t-1})
$$
\n
$$
v_t \leq M z_t
$$
\n
$$
z_t \geq z_{t-1}
$$

Piecewise Linear Approximation (PLA)

$$
v_t = \sum_{s=0}^{t} x_s
$$

\n
$$
v_t = \sum_{o \in \mathcal{O}} B_o \lambda_{t,o}
$$

\n
$$
x_t \leq \Delta_t \sum_{o \in \mathcal{O}} F_o \lambda_{t,o}
$$

\n
$$
y_{p,t} = w_{p,t} - w_{p,t-1}
$$

\n
$$
w_{p,t} = \sum_{o \in \mathcal{O}} H_{p,o} \lambda_{t,o}
$$

\n
$$
z_t \geq z_{t-1}
$$

\n
$$
z_t = \sum_{o \in \mathcal{O}} \lambda_{t,o}
$$

\n
$$
\{\lambda_{t,o} | o \in \mathcal{O} \} \in S0S2
$$

 2990

Approximations & Relaxations II

Secant Relaxation (1-SEC)

Relax all the nonlinear production functions using inner and outer approximations.[\[2\]](#page-111-0)

m.
Seria

Approximations & Relaxations II

Secant Relaxation (1-SEC)

Relax all the nonlinear production functions using inner and outer approximations.[\[2\]](#page-111-0)

Pros

• Relaxation of the original formulation.

 Ω

Approximations & Relaxations II

Secant Relaxation (1-SEC)

Relax all the nonlinear production functions using inner and outer approximations.[\[2\]](#page-111-0)

- Pros
	- Relaxation of the original formulation.
	- Does NOT introduce additional SOS2 variables.
- Cons
	- May not be 'close' to a feasible solution of the MINLP formulation.

Secant Relaxation (1-SEC)

$$
v_t = \sum_{s=0}^t x_s
$$

Srikrishna Sridhar, Jeff Linderoth, James Leudtke [SILO Seminars: Feb 1, 2012](#page-0-0)

Secant Relaxation (1-SEC)

$$
v_t = \sum_{s=0}^t x_s
$$

$$
v_t = \sum_{o \in \mathcal{O}} \hat{B}_o \lambda_{t,o}
$$

$$
x_t \leq \Delta_t \sum_{o \in \mathcal{O}} \hat{F}_o \lambda_{t,o}
$$

Secant Relaxation (1-SEC)
\n
$$
v_t = \sum_{s=0}^{t} x_s
$$
\n
$$
v_t = \sum_{o \in \mathcal{O}} \hat{B}_o \lambda_{t,o}
$$
\n
$$
x_t \leq \Delta_t \sum_{o \in \mathcal{O}} \hat{F}_o \lambda_{t,o}
$$
\n
$$
y_{p,t} = w_{p,t} - w_{p,t-1}
$$
\n
$$
w_{p,t} = \sum_{o \in \mathcal{O}} \hat{H}_{p,o} \lambda_{t,o}
$$

$$
V_t = \sum_{s=0}^{t} x_s
$$

\n
$$
x_t \leq \Delta_t f(v_{t-1})
$$

\n
$$
y_{p,t} = h_p(v_t) - h_p(v_{t-1})
$$

\n
$$
v_t \leq M z_t
$$

\n
$$
z_t \geq z_{t-1}
$$

Secant Relaxation (1-SEC)
\n
$$
v_t = \sum_{s=0}^{t} x_s
$$
\n
$$
v_t = \sum_{o \in O} \hat{B}_o \lambda_{t,o}
$$
\n
$$
x_t \leq \Delta_t \sum_{o \in O} \hat{F}_o \lambda_{t,o}
$$
\n
$$
y_{p,t} = w_{p,t} - w_{p,t-1}
$$
\n
$$
w_{p,t} = \sum_{o \in O} \hat{H}_{p,o} \lambda_{t,o}
$$
\n
$$
z_t \geq z_{t-1}
$$
\n
$$
z_t = \sum_{o \in O} \lambda_{t,o} \{\lambda_{t,o} \quad | o \in O \} \in \text{SOS2}
$$

Relax all the nonlinear production functions using inner and outer approximations but use multiple secants instead of a just a single one.

Relax all the nonlinear production functions using inner and outer approximations but use multiple secants instead of a just a single one.

- Pros
	- 'Close' to a feasible solution of the MINLP formulation.
	- Relaxation of the original formulation.

Relax all the nonlinear production functions using inner and outer approximations but use multiple secants instead of a just a single one.

- Pros
	- 'Close' to a feasible solution of the MINLP formulation.
	- Relaxation of the original formulation.

Cons

Relax all the nonlinear production functions using inner and outer approximations but use multiple secants instead of a just a single one.

- Pros
	- 'Close' to a feasible solution of the MINLP formulation.
	- Relaxation of the original formulation.
- Cons
	- Introduces additional SOS2 variables to branch on.

[Performance Evaluation](#page-85-0)

Srikrishna Sridhar, Jeff Linderoth, James Leudtke [SILO Seminars: Feb 1, 2012](#page-0-0)

メロメ メタメ メミメ メミメ

È

 299

Goals

- Impact on formulation accuracy in going from F_1 to F_2
- Impact in solution time in going from F_1 to F_2 as solved by our models.

Sample Application

Transportation problem with production facilities manufacturing products for customers.

 \leftarrow \cap \rightarrow \leftarrow \cap \rightarrow

ALCOHOL:

つへへ

• Transportation problem with production facilities I manufacturing products \mathcal{P}^+ for customers $\mathcal{J}.$

 Ω

- \bullet Transportation problem with production facilities I manufacturing products \mathcal{P}^+ for customers $\mathcal{J}.$
- Demand made by customers are known a priori.

つへへ

- Transportation problem with production facilities I manufacturing products \mathcal{P}^+ for customers $\mathcal{J}.$
- Demand made by customers are known a priori.
- Facility operations follow known production functions.

へのへ

- Transportation problem with production facilities I manufacturing products \mathcal{P}^+ for customers $\mathcal{J}.$
- Demand made by customers are known a priori.
- Facility operations follow known production functions.
- Facilities incur fixed, operating, transportation and penalty costs.

へのへ

Table: Comparing solution quality of the two different MINLP formulations F_1 and F_2 using BARON

医毛囊 医头尾 医下颌

重

Table: Comparing solution quality of the two different MINLP formulations F_1 and F_2 using BARON

医毛囊 医头尾 医下颌

重

Table: Comparing solution quality of the two different MINLP formulations F_1 and F_2 using BARON

医毛囊 医头尾 医下颌

重

Table: Comparing solution quality of the two different MINLP formulations F_1 and F_2 using BARON

医毛囊 医头尾 医下颌

重

 \leftarrow \Box

Table: Comparing gaps of F_1 (with BARON) with MIP formulations (with Gurobi) of F_2 on large instances with more than 200 binary variables.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

Table: Comparing gaps of F_1 (with BARON) with MIP formulations (with Gurobi) of F_2 on large instances with more than 200 binary variables.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

Table: Comparing gaps of F_1 (with BARON) with MIP formulations (with Gurobi) of F_2 on large instances with more than 200 binary variables.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

Table: Comparing gaps of F_1 (with BARON) with MIP formulations (with Gurobi) of F_2 on large instances with more than 200 binary variables.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

Table: Comparing gaps of F_1 (with BARON) with MIP formulations (with Gurobi) of F_2 on large instances with more than 200 binary variables.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

扂

Comparing Algorithms: Large Instances

Table: Comparing gaps of F_1 (with BARON) with MIP formulations (with Gurobi) of F_2 on large instances with more than 200 binary variables.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

Comparing Algorithms: Large Instances

Table: Comparing gaps of F_1 (with BARON) with MIP formulations (with Gurobi) of F_2 on large instances with more than 200 binary variables.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

Comparing Algorithms: Large Instances

Table: Comparing gaps of F_1 (with BARON) with MIP formulations (with Gurobi) of F_2 on large instances with more than 200 binary variables.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

• Defined a non-convex production process involving desirable & undesirable products.

K ロ ト K 倒 ト K 走 ト

∢ 重→

 $2Q$

扂

• Defined a non-convex production process involving desirable & undesirable products.

a mills.

→ 母 →

す唐★ ∢ 重. $2Q$

• Ratio of by-products to total production increases monotonically.

- Defined a non-convex production process involving desirable & undesirable products.
- Ratio of by-products to total production increases monotonically.
- **Methods**
	- Reformulated an existing formulation (F_1) to produce a more accurate formulation(F_2) based on the cumulative product production function.

- Defined a non-convex production process involving desirable & undesirable products.
- Ratio of by-products to total production increases monotonically.
- Methods
	- Reformulated an existing formulation (F_1) to produce a more accurate formulation(F_2) based on the cumulative product production function.

つへへ

Devised scalable MIP approximations & relaxations (PLA, 1-SEC, k-SEC).
• Problem Description

- Defined a non-convex production process involving desirable & undesirable products.
- Ratio of by-products to total production increases monotonically.
- Methods
	- Reformulated an existing formulation (F_1) to produce a more accurate formulation(F_2) based on the cumulative product production function.

つくい

- Devised scalable MIP approximations & relaxations (PLA, 1-SEC, k-SEC).
- **e** Conclusions

• Problem Description

- Defined a non-convex production process involving desirable & undesirable products.
- Ratio of by-products to total production increases monotonically.
- Methods
	- Reformulated an existing formulation (F_1) to produce a more accurate formulation(F_2) based on the cumulative product production function.
	- Devised scalable MIP approximations & relaxations (PLA, 1-SEC, k-SEC).
- **Conclusions**
	- Formulation F_2 is a more accurate evaluation of production operations as compared to F_1 .

メロメ メ御 メメ ミメ メミメ

へのへ

• Problem Description

- Defined a non-convex production process involving desirable & undesirable products.
- Ratio of by-products to total production increases monotonically.
- Methods
	- Reformulated an existing formulation (F_1) to produce a more accurate formulation(F_2) based on the cumulative product production function.
	- Devised scalable MIP approximations & relaxations (PLA, 1-SEC, k-SEC).

e Conclusions

• Formulation F_2 is a more accurate evaluation of production operations as compared to F_1 .

K ロ ▶ K 倒 ▶

→ 唐 > → 唐 >

 $2Q$

 \bullet F₂ is computationally more desirable than F₁.

E. W. L. Beale and J. A. Tomlin.

Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables.

In J. Lawrence, editor, Proceedings of the 5th International Conference on Operations Research, pages 447–454, 1970.

Peter Gruber and Petar Kenderov. 昂 Approximation of convex bodies by polytopes. Rendiconti del Circolo Matematico di Palermo, 31:195–225, 1982. 10.1007/BF02844354.

へのへ