Relaxations for Production Planning Problems with Increasing By-products

Srikrishna Sridhar, Jeff Linderoth, James Leudtke

University of Wisconsin-Madison

1 Feb 2012

Srikrishna Sridhar, Jeff Linderoth, James Leudtke SILO Seminars: Feb 1, 2012

• Problem Description

• Production process involves desirable & undesirable products.

< 注→ < 注→

• Problem Description

• Production process involves desirable & undesirable products.

★ E > < E >

• Ratio of by-products to total production increases monotonically.

• Problem Description

• Production process involves desirable & undesirable products.

★ E > < E >

- Ratio of by-products to total production increases monotonically.
- Non-convex problem.

• Problem Description

• Production process involves desirable & undesirable products.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Ratio of by-products to total production increases monotonically.
- Non-convex problem.

Contributions

• New discrete time MINLP formulation.

• Problem Description

• Production process involves desirable & undesirable products.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Ratio of by-products to total production increases monotonically.
- Non-convex problem.

Contributions

- New discrete time MINLP formulation.
- MIP Approximation & Relaxation schemes.

Problem Description

• Production process involves desirable & undesirable products.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Ratio of by-products to total production increases monotonically.
- Non-convex problem.

Contributions

- New discrete time MINLP formulation.
- MIP Approximation & Relaxation schemes.

• Performance evaluation

Problem Description

▲□→ < □→</p>

- < ≣ →

æ

Srikrishna Sridhar, Jeff Linderoth, James Leudtke SILO Seminars: Feb 1, 2012

• The production process creates a mixture of useful products \mathcal{P}^+ and by-products \mathcal{P}^- .

回 と く ヨ と く ヨ と

- The production process creates a mixture of useful products \mathcal{P}^+ and by-products \mathcal{P}^- .
- Decisions span a planning horizon \mathcal{T} .

白 ト イヨト イヨト

- The production process creates a mixture of useful products \mathcal{P}^+ and by-products \mathcal{P}^- .
- Decisions span a planning horizon \mathcal{T} .
- Discrete decisions determine the start time of the production process.

- The production process creates a mixture of useful products \mathcal{P}^+ and by-products \mathcal{P}^- .
- Decisions span a planning horizon \mathcal{T} .
- Discrete decisions determine the start time of the production process.

• • = • • = •

• Continuous decisions determine the production profile evaluated by production functions $f(\cdot)$ and $g_p(\cdot)$.

 Production function f(·) is a concave function that determines the maximum production rate as a function of total production.

æ

<ロ> <同> <同> <同> < 同> < 同>

- Production function $f(\cdot)$ is a concave function that determines the maximum production rate as a function of total production.
- Product fraction functions g_p(·) evolve monotonically as a function of the total production.

- Production function f(·) is a concave function that determines the maximum production rate as a function of total production.
- Product fraction functions g_p(·) evolve monotonically as a function of the total production.

Srikrishna Sridhar, Jeff Linderoth, James Leudtke SILO Seminars: Feb 1, 2012

- Production function $f(\cdot)$ is a concave function that determines the maximum production rate as a function of total production.
- Product fraction functions g_p(·) evolve monotonically as a function of the total production.

Srikrishna Sridhar, Jeff Linderoth, James Leudtke SILO Seminars: Feb 1, 2012

(Loading...)

・ロ・ ・四・ ・日・ ・日・

2

$$v(t) = \int_0^t x(s) \mathrm{d}s$$

→ E → < E →</p>

$$v(t) = \int_0^t x(s) \mathrm{d}s$$

Mixture production rate is limited by production function $f(\cdot)$

$$x(t) \leq f(v(t))$$

→ Ξ → < Ξ →</p>

$$v(t) = \int_0^t x(s) \mathrm{d}s$$

Mixture production rate is limited by production function $f(\cdot)$

$$x(t) \leq f(v(t))$$

Product production rates $y_p(t)$ calculated by fraction functions $g_p(\cdot)$

$$y_p(t) = x(t) g_p(v(t))$$

• • = • • = •

$$v(t) = \int_0^t x(s) \mathrm{d}s$$

Mixture production rate is limited by production function $f(\cdot)$

$$x(t) \leq f(v(t))$$

Product production rates $y_p(t)$ calculated by fraction functions $g_p(\cdot)$

$$y_p(t) = x(t) g_p(v(t))$$

Production profiles are active only after the start time z(t)

$$v(t) = 0 \quad \forall t < z(t)$$

(B) (A) (B)

Discrete time MINLP formulations

・ロト ・回ト ・ヨト ・ヨト

æ

Srikrishna Sridhar, Jeff Linderoth, James Leudtke SILO Seminars: Feb 1, 2012

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation (F)		
$v(t) = \int_0^t x(s) \mathrm{d}s$		
$x(t) \leq f(v(t))$		
$y_p(t) = x(t) g_p(v(t))$		
$v(t) = 0 \forall t < z(t)$		
$z(t)$: $\mathcal{T} ightarrow \{0,1\},$ increasing		

イロト イヨト イヨト イヨト

æ

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation (F)		
$v(t) = \int_0^t x(s) \mathrm{d}s$		
$x(t) \leq f(v(t))$		
$y_p(t) = x(t) g_p(v(t))$		
$v(t) = 0 \forall t < z(t)$		
$z(t)$: $\mathcal{T} ightarrow \{0,1\},$ increasing		

イロト イヨト イヨト イヨト

æ

Past models have proposed a natural discretization of this continuous time model.

 v_t Cumulative production up to time period $t \in \mathcal{T}$.

★ E ► ★ E ►

Past models have proposed a natural discretization of this continuous time model.

- v_t Cumulative production up to time period $t \in \mathcal{T}$.
- x_t Mixture production during time period $t \in \mathcal{T}$.

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation
$$(F)$$

$$v(t) = \int_0^t x(s) \mathrm{d}s$$

$$x(t) \leq f(v(t))$$

$$y_p(t) = x(t) g_p(v(t))$$

$$v(t) = 0 \quad \forall t < z(t)$$

$$z(t): \mathcal{T} \rightarrow \{0,1\}, \text{increasing}$$

 v_t Cumulative production up to time period $t \in \mathcal{T}$.

 x_t Mixture production during time period $t \in \mathcal{T}$.

 $\begin{array}{ll} y_{p,t} & \text{Product } p \in \mathcal{P} \text{ production} \\ & \text{during time period } t \in \mathcal{T}. \end{array}$

Image: A matrix

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation
$$(F)$$

$$v(t) = \int_0^t x(s) \mathrm{d}s$$

$$x(t) \leq f(v(t))$$

$$y_p(t) = x(t) g_p(v(t))$$

$$v(t) = 0 \quad \forall t < z(t)$$

$$z(t): \mathcal{T} \rightarrow \{0,1\}, \text{increasing}$$

- v_t Cumulative production up to time period $t \in \mathcal{T}$.
- x_t Mixture production during time period $t \in \mathcal{T}$.
- $\begin{array}{ll} y_{p,t} & \text{Product } p \in \mathcal{P} \text{ production} \\ & \text{during time period } t \in \mathcal{T}. \end{array}$
 - *z*_t Facility on/off decision variable.

Past models have proposed a natural discretization of this continuous time model.

Srikrishna Sridhar, Jeff Linderoth, James Leudtke

SILO Seminars: Feb 1, 2012

Past models have proposed a natural discretization of this continuous time model.

Srikrishna Sridhar, Jeff Linderoth, James Leudtke

Past models have proposed a natural discretization of this continuous time model.

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation (F)	Discrete time formulation (F_1)
$v(t) = \int_0^t x(s) \mathrm{d}s$	$v_t = \sum_{s=0}^t x_s$
$x(t) \leq f(v(t))$	$x_t \leq \Delta_t f(\mathbf{v}_{t-1})$
$y_p(t) = x(t) g_p(v(t))$	$y_{p,t} = \mathbf{x}_t g_p(\mathbf{v}_{t-1})$
$v(t) = 0 \forall t < z(t)$	
$z(t): \mathcal{T} ightarrow \{0,1\},$ increasing	
	・ロン ・雪ン ・甘ン ・甘い 。

Srikrishna Sridhar, Jeff Linderoth, James Leudtke

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation (F)	Discrete time formulation (F_1)
$v(t) = \int_0^t x(s) \mathrm{d}s$	$v_t = \sum_{s=0}^t x_s$
$x(t) \leq f(v(t))$	$x_t \leq \Delta_t f(\mathbf{v}_{t-1})$
$y_p(t) = x(t) g_p(v(t))$	$y_{p,t} = \mathbf{x}_t g_p(\mathbf{v}_{t-1})$
$v(t) = 0 \forall t < z(t)$	$v_t \leq M z_t$
$z(t): \mathcal{T} ightarrow \{0,1\},$ increasing	

Srikrishna Sridhar, Jeff Linderoth, James Leudtke

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation (F)	Discrete time formulation (F_1)
$v(t) = \int_0^t x(s) \mathrm{d}s$	$v_t = \sum_{s=0}^t x_s$
$x(t) \leq f(v(t))$	$x_t \leq \Delta_t f(\mathbf{v}_{t-1})$
$y_p(t) = x(t) g_p(v(t))$	$y_{p,t} = x_t g_p(v_{t-1})$
v(t) = 0 orall t < z(t)	$v_t \leq M \; z_t$
$z(t): \mathcal{T} ightarrow \{0,1\}, increasing$	$z_t \ge z_{t-1}$
Srikrishna Sridhar, Jeff Linderoth, James Leudtke	ৰ □ ১ ৰ 🗇 ১ ৰ ট ১ ৰ ট ১ ট 👻 SILO Seminars: Feb 1, 2012

Formulation F₁

How much of product p is produced up to time t?

Formulation F₁

How much of product p is produced up to time t?

$$w_{p,t} \stackrel{\text{def}}{=} \sum_{s \leq t} y_{p,s}$$

$$w_{p,t} \stackrel{\text{def}}{=} \sum_{s \leq t} y_{p,s}$$

$$w_{t} = \sum_{s=0}^{t} x_{s}$$

$$x_{t} \leq \Delta_{t} f(v_{t-1})$$

$$y_{p,t} = x_{t} g_{p}(v_{t-1})$$

$$v_{t} \leq M z_{t}$$

$$z_{t} \geq z_{t-1}$$

Srikrishna Sridhar, Jeff Linderoth, James Leudtke SILO Seminars: Feb 1, 2012

Formulation F₁

How much of product p is produced up to time t?

$$w_{p,t} \stackrel{\text{def}}{=} \sum_{s \le t} y_{p,s}$$

$$= \sum_{s \le t} x_s g_p(v_{s-1})$$

$$v_t = \sum_{s=0}^t x_s$$

$$x_t \le \Delta_t f(v_{t-1})$$

$$y_{p,t} = x_t g_p(v_{t-1})$$

$$v_t \le M z_t$$

$$z_t \ge z_{t-1}$$

Discussion

Srikrishna Sridhar, Jeff Linderoth, James Leudtke SILO Seminars: Feb 1, 2012

Formulation F_1 formulation

How much product is produced up to time *t*?

By-product fraction (q_{n-})

0.2 0.4 0.6 Total Production (v_t)

1.0 777 F.

$$w_{p,t} \stackrel{\text{def}}{=} \sum_{s \le t} y_{p,s}$$
$$= \sum_{s \le t} x_s g_p(v_{s-1})$$

ZZZ - F____

Useful product fraction (q_{n^+})

Total Production (v.)

Discrete time formulation (F1)

$$v_t = \sum_{s=0}^t x_s$$

$$x_t \leq \Delta_t f(v_{t-1})$$

$$y_{p,t} = x_t g_p(v_{t-1})$$

 $v_t \leq M z_t$

$$z_t \geq z_{t-1}$$

Srikrishna Sridhar, Jeff Linderoth, James Leudtke SILO

0.4

0.3

Can we do better?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Can we do better?

Can we calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t ?

Can we do better?

Can we calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t ?

Can we do better?

Can we calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t ?

$$w_{p,t} = \int_0^t y_p(s) \mathrm{d}s$$

Continuous time formulation (F) $v(t) = \int_0^t x(s) \mathrm{d}s$ x(t) < f(v(t)) $y_p(t) = x(t) g_p(v(t))$ $v(t) = 0 \quad \forall t < z(t)$ $z(t): \mathcal{T} \rightarrow \{0,1\},$ inc

Can we do better?

Can we calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t ?

$$w_{p,t} = \int_0^t y_p(s) ds$$
$$= \int_0^t x(s) g_p(v(s)) ds$$

Continuous time formulation (F) $v(t) = \int_0^t x(s) \mathrm{d}s$ x(t) < f(v(t)) $y_p(t) = x(t) g_p(v(t))$ $v(t) = 0 \quad \forall t < z(t)$ $z(t): \mathcal{T} \rightarrow \{0,1\},$ inc

Can we do better?

Can we calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t ?

$$w_{p,t} = \int_0^t y_p(s) ds$$
$$= \int_0^t x(s) g_p(v(s)) ds$$
$$= \int_0^{v_t} g_p(v) dv$$

Continuous time formulation (F) $v(t) = \int_0^t x(s) \mathrm{d}s$ x(t) < f(v(t)) $y_p(t) = x(t) g_p(v(t))$ $v(t) = 0 \quad \forall t < z(t)$ $z(t): \mathcal{T} \rightarrow \{0,1\},$ inc

Can we do better?

Can we calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t ?

$$\begin{split} w_{p,t} &= \int_0^t y_p(s) \mathrm{d}s \\ &= \int_0^t x(s) \ g_p(v(s)) \mathrm{d}s \\ &= \int_0^{v_t} g_p(v) \mathrm{d}v \\ &\stackrel{\mathrm{def}}{=} h_p(v_t) \end{split}$$

Continuous time formulation (F) $v(t) = \int_0^t x(s) \mathrm{d}s$ x(t) < f(v(t)) $y_p(t) = x(t) g_p(v(t))$ $v(t) = 0 \quad \forall t < z(t)$ $z(t): \mathcal{T} \to \{0,1\},$ inc

• Integral of a non-increasing function is concave .

Key Idea

- Integral of a non-increasing function is concave .
- Integral of a non-decreasing function is convex.

Key Idea

- Integral of a non-increasing function is concave .
- Integral of a non-decreasing function is convex.
- Lets deal with $h_p(\cdot)$ instead of $g_p(\cdot)!$

What have we done so far ?

< ロ > < 回 > < 回 > < 回 > < 回 > <

æ

What have we done so far ?

Srikrishna Sridhar, Jeff Linderoth, James Leudtke SILO Seminars: Feb 1, 2012

What have we done so far ?

Srikrishna Sridhar, Jeff Linderoth, James Leudtke SILO Seminars: Feb 1, 2012

Which formulation is better?

$$F_1$$
 F_2 $v_t = \sum_{s=0}^t x_s$ $v_t = \sum_{s=0}^t x_s$ $x_t \le \Delta_t f(v_{t-1})$ $x_t \le \Delta_t f(v_{t-1})$ $y_{p,t} = x_t g_p(v_{t-1})$ $y_{p,t} = h_p(v_t) - h_p(v_{t-1})$ $v_t \le M z_t$ $z_t \ge z_{t-1}$

イロト イヨト イヨト イヨト

æ

Which formulation is better?

 \bullet $\ensuremath{\mathsf{F}}_2$ is a more accurate formulation of $\ensuremath{\mathsf{F}}$ than $\ensuremath{\mathsf{F}}_1$.

イロン イ部ン イヨン イヨン 三日

Which formulation is better?

- \bullet F_2 is a more accurate formulation of F than F_1 .
- F₂ is computationally better because it deals with convex functions while F₁ deals with bivariate functions.

回 と く ヨ と く ヨ と

æ

Srikrishna Sridhar, Jeff Linderoth, James Leudtke SILO Seminars: Feb 1, 2012

Mixed Integer Non-Linear Programs (MINLP)

... are slow and hard!

同 とくほ とくほと

æ

Mixed Integer Non-Linear Programs (MINLP)

... are slow and hard!

Why MINLP is like Cricket

- It goes on forever.
- May not produced a result.

But...the MILP force is here

We only need to approximate or relax univariate convex and concave functions.

イロト イヨト イヨト イヨト

æ

Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations.[1]

Srikrishna Sridhar, Jeff Linderoth, James Leudtke

Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations.[1]

- Pros
 - 'Close' to a feasible solution of the MINLP formulation.

Srikrishna Sridhar, Jeff Linderoth, James Leudtke

Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations.[1]

- Pros
 - 'Close' to a feasible solution of the MINLP formulation.
- Cons
 - Introduces additional SOS2 variables to branch on.

Srikrishna Sridhar, Jeff Linderoth, James Leudtke

Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations.[1]

- Pros
 - 'Close' to a feasible solution of the MINLP formulation.
- Cons
 - Introduces additional SOS2 variables to branch on.
 - NOT a relaxation of the original formulation.

Srikrishna Sridhar, Jeff Linderoth, James Leudtke

Approximating $f(v_t)$

 $f(\mathbf{v}_t) \approx \sum_{o \in \mathcal{O}} \lambda_{t,o} f(\mathbf{a}_o)$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Approximating $f(v_t)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Approximating $f(v_t)$

$$f(v_t) pprox \sum_{o \in \mathcal{O}} \lambda_{t,o} f(a_o)$$

 $1 = \sum_{o \in \mathcal{O}} \lambda_{t,o}$

Structure: Only two adjacent non zeros.

Approximating $f(v_t)$

$$f(v_t) pprox \sum_{o \in \mathcal{O}} \lambda_{t,o} f(a_o)$$

 $1 = \sum_{o \in \mathcal{O}} \lambda_{t,o}$

Structure: Only two adjacent non zeros.

$$\{\lambda_{t,o}|o \in \mathcal{O}\} \in \mathsf{S0S2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Piecewise Linear Approximation (PLA)

Piecewise Linear Approximation (PLA)

$$F_{2}$$

$$v_{t} = \sum_{s=0}^{t} x_{s}$$

$$x_{t} \leq \Delta_{t} f(v_{t-1})$$

Piecewise Linear Approximation (PLA)

$$v_{t} = \sum_{s=0}^{t} x_{s}$$
$$v_{t} = \sum_{o \in \mathcal{O}} B_{o} \lambda_{t,o}$$
$$x_{t} \le \Delta_{t} \sum_{o \in \mathcal{O}} F_{o} \lambda_{t,c}$$

コン (高) (日) (日) 日 (の)(

Piecewise Linear Approximation (PLA)

$$F_2$$

$$v_t = \sum_{s=0}^{t} x_s$$

$$x_t \le \Delta_t f(v_{t-1})$$

$$y_{p,t} = h_p(v_t) - h_p(v_{t-1})$$

Piecewise Linear Approximation (PLA)

$$v_{t} = \sum_{s=0}^{t} x_{s}$$

$$v_{t} = \sum_{o \in \mathcal{O}} B_{o} \lambda_{t,o}$$

$$x_{t} \leq \Delta_{t} \sum_{o \in \mathcal{O}} F_{o} \lambda_{t,o}$$

$$y_{p,t} = w_{p,t} - w_{p,t-1}$$

$$w_{p,t} = \sum_{o \in \mathcal{O}} H_{p,o} \lambda_{t,o}$$

Piecewise Linear Approximation (PLA)

$$F_2$$

$$v_t = \sum_{s=0}^{t} x_s$$

$$x_t \le \Delta_t f(v_{t-1})$$

$$y_{p,t} = h_p(v_t) - h_p(v_{t-1})$$

$$v_t \le M z_t$$

$$z_t \ge z_{t-1}$$

Piecewise Linear Approximation (PLA)

$$v_{t} = \sum_{s=0}^{t} x_{s}$$

$$v_{t} = \sum_{o \in \mathcal{O}} B_{o} \ \lambda_{t,o}$$

$$x_{t} \leq \Delta_{t} \sum_{o \in \mathcal{O}} F_{o} \ \lambda_{t,o}$$

$$y_{p,t} = w_{p,t} - w_{p,t-1}$$

$$w_{p,t} = \sum_{o \in \mathcal{O}} H_{p,o} \ \lambda_{t,o}$$

$$z_{t} \geq z_{t-1}$$

$$z_{t} = \sum_{o \in \mathcal{O}} \lambda_{t,o}$$

$$\{\lambda_{t,o} | o \in \mathcal{O}\} \in S0S2$$

Approximations & Relaxations II

Secant Relaxation (1-SEC)

Relax all the nonlinear production functions using inner and outer approximations.[2]

Approximations & Relaxations II

Secant Relaxation (1-SEC)

Relax all the nonlinear production functions using inner and outer approximations.[2]

- Pros
 - Relaxation of the original formulation.

Approximations & Relaxations II

Secant Relaxation (1-SEC)

Relax all the nonlinear production functions using inner and outer approximations.[2]

- Pros
 - Relaxation of the original formulation.
 - Does NOT introduce additional SOS2 variables.
- Cons
 - May not be 'close' to a feasible solution of the MINLP formulation.

Secant Relaxation (1-SEC)

$$v_t = \sum_{s=0}^t x_s$$

Srikrishna Sridhar, Jeff Linderoth, James Leudtke SILO Seminars: Feb 1, 2012

Secant Relaxation (1-SEC)

$$v_{t} = \sum_{s=0}^{t} x_{s}$$

$$v_{t} = \sum_{o \in \mathcal{O}} \hat{B}_{o} \lambda_{t,o}$$

$$x_{t} \leq \Delta_{t} \sum_{o \in \mathcal{O}} \hat{F}_{o} \lambda_{t,o}$$

C

I Dala a

Secant Relaxation (1-SEC)

$$v_{t} = \sum_{s=0}^{t} x_{s}$$

$$v_{t} = \sum_{o \in \mathcal{O}} \hat{B}_{o} \lambda_{t,o}$$

$$x_{t} \leq \Delta_{t} \sum_{o \in \mathcal{O}} \hat{F}_{o} \lambda_{t,o}$$

$$y_{p,t} = w_{p,t} - w_{p,t-1}$$

$$v_{p,t} = \sum_{o \in \mathcal{O}} \hat{H}_{p,o} \lambda_{t,o}$$

$$F_{2}$$

$$v_{t} = \sum_{s=0}^{t} x_{s}$$

$$x_{t} \leq \Delta_{t} f(v_{t-1})$$

$$y_{p,t} = h_{p}(v_{t}) - h_{p}(v_{t-1})$$

$$v_{t} \leq M z_{t}$$

$$z_{t} \geq z_{t-1}$$

Secant Relaxation (1-SEC)

$$v_{t} = \sum_{s=0}^{t} x_{s}$$

$$v_{t} = \sum_{o \in \mathcal{O}} \hat{B}_{o} \lambda_{t,o}$$

$$x_{t} \leq \Delta_{t} \sum_{o \in \mathcal{O}} \hat{F}_{o} \lambda_{t,o}$$

$$y_{p,t} = w_{p,t} - w_{p,t-1}$$

$$w_{p,t} = \sum_{o \in \mathcal{O}} \hat{H}_{p,o} \lambda_{t,o}$$

$$z_{t} \geq z_{t-1}$$

$$z_{t} = \sum_{o \in \mathcal{O}} \lambda_{t,o} \{\lambda_{t,o} \mid o \in \mathcal{O}\} \in S0S2$$

Multiple Secant Relaxation (k-SEC)

Relax all the nonlinear production functions using inner and outer approximations but use multiple secants instead of a just a single one.

Approximations & Relaxations III

Multiple Secant Relaxation (k-SEC)

Relax all the nonlinear production functions using inner and outer approximations but use multiple secants instead of a just a single one.

- Pros
 - 'Close' to a feasible solution of the MINLP formulation.
 - Relaxation of the original formulation.

Approximations & Relaxations III

Multiple Secant Relaxation (k-SEC)

Relax all the nonlinear production functions using inner and outer approximations but use multiple secants instead of a just a single one.

- Pros
 - 'Close' to a feasible solution of the MINLP formulation.
 - Relaxation of the original formulation.

• Cons

Multiple Secant Relaxation (k-SEC)

Relax all the nonlinear production functions using inner and outer approximations but use multiple secants instead of a just a single one.

- Pros
 - 'Close' to a feasible solution of the MINLP formulation.
 - Relaxation of the original formulation.
- Cons
 - Introduces additional SOS2 variables to branch on.

Multiple Secant Relaxation (k-SEC)

Multiple Secant Relaxation (k-SEC)
$v_t = \sum_{s=0}^t x_s$	
$m{v}_t = \sum_{o \in \mathcal{O}} \hat{B}_o \; \lambda_{t,o}$	
$x_t \leq \Delta_t \sum_{o \in \mathcal{O}} \hat{F}_o \; \lambda_{t,o}$	
$y_{p,t} = w_{p,t} - w_{p,t-1}$ $\sum H_{p,o}\lambda_{t,o} \le w_{p,t} \le \sum \hat{H}_{p,o} \lambda_{t,o}$	$\forall \pmb{p} \in \mathcal{P}^+$
$\sum_{o \in \mathcal{O}} H_{p,o} \lambda_{t,o} \geq w_{p,t} \geq \sum_{o \in \mathcal{O}} \hat{H}_{p,o} \ \lambda_{t,o}$	$\forall p \in \mathcal{P}^-$
$egin{aligned} & egin{aligned} & egin\\ & egin{aligned} & egin{aligned} & egin{aligne$	
$z_t = \sum_{o \in \mathcal{O}} \lambda_{t,o}$	
	・ロト ・回 ト ・ヨト ・ヨト - ヨ

Performance Evaluation

Srikrishna Sridhar, Jeff Linderoth, James Leudtke SILO Seminars: Feb 1, 2012

イロン イヨン イヨン イヨン

Goals

- \bullet Impact on formulation accuracy in going from F_1 to F_2
- Impact in solution time in going from F_1 to F_2 as solved by our models.

Sample Application

Transportation problem with production facilities manufacturing products for customers.

・ロッ ・回 ・ ・ ヨッ ・

• Transportation problem with production facilities \mathcal{I} manufacturing products \mathcal{P}^+ for customers \mathcal{J} .

- Transportation problem with production facilities \mathcal{I} manufacturing products \mathcal{P}^+ for customers \mathcal{J} .
- Demand made by customers are known a priori.

- Transportation problem with production facilities *I* manufacturing products *P*⁺ for customers *J*.
- Demand made by customers are known a priori.
- Facility operations follow known production functions.

- Transportation problem with production facilities \mathcal{I} manufacturing products \mathcal{P}^+ for customers \mathcal{J} .
- Demand made by customers are known a priori.
- Facility operations follow known production functions.
- Facilities incur fixed, operating, transportation and penalty costs.

Table: Comparing solution quality of the two different MINLP formulations F_1 and F_2 using BARON

					Formulation			Solution	difference	
$ \mathcal{I} $	$ \mathcal{T} $	$ \mathcal{P} $	F	1		F_2		$\Delta y_{i,p,t}^*(Range: 0-30)$		
			Solution Bound	Best F ₁ Feasible Solution	Repaired F ₁ Solution	Solution Bound	Best F ₂ Feasible Solution	$\begin{array}{l} Maximum \\ (\forall i, p, t) \end{array}$	Average $(\forall i, p, t)$	
5	5	2	0.171	0.200	0.272	0.208	0.219	5.17	0.47	

SILO Seminars: Feb 1, 2012

Table: Comparing solution quality of the two different MINLP formulations F_1 and F_2 using BARON

					Formulation			Solution	difference	
$ \mathcal{I} $	$ \mathcal{T} $	$ \mathcal{P} $	F	1		F_2		$\Delta y_{i,p,t}^*(Range: 0-30)$		
			Solution Bound	Best F ₁ Feasible Solution	Repaired F ₁ Solution	Solution Bound	Best F ₂ Feasible Solution	$\begin{array}{l} Maximum \\ (\forall i, p, t) \end{array}$	Average $(\forall i, p, t)$	
5	5	2	0.171	0.200	0.272	0.208	0.219	5.17	0.47	

SILO Seminars: Feb 1, 2012

Table: Comparing solution quality of the two different MINLP formulations F_1 and F_2 using BARON

					Formulation			Solution	difference	
$ \mathcal{I} $	$ \mathcal{T} $	$ \mathcal{P} $	F	1		F_2		$\Delta y_{i,p,t}^*(Range: 0-30)$		
			Solution Bound	Best F ₁ Feasible Solution	Repaired F ₁ Solution	Solution Bound	Best F ₂ Feasible Solution	$\begin{array}{c} Maximum \\ (\forall i, p, t) \end{array}$	Average $(\forall i, p, t)$	
5	5	2	0.171	0.200	0.272	0.208	0.219	5.17	0.47	

SILO Seminars: Feb 1, 2012

Table: Comparing solution quality of the two different MINLP formulations F_1 and F_2 using BARON

					Formulation			Solution	difference	
$ \mathcal{I} $	$ \mathcal{T} $	$ \mathcal{P} $	F	1		F_2		$\Delta y_{i,p,t}^*(Range: 0-30)$		
			Solution Bound	Best F ₁ Feasible Solution	Repaired F ₁ Solution	Solution Bound	Best F ₂ Feasible Solution	$\begin{array}{l} Maximum \\ (\forall i, p, t) \end{array}$	Average $(\forall i, p, t)$	
5	5	2	0.171	0.200	0.272	0.208	0.219	5.17	0.47	

SILO Seminars: Feb 1, 2012

Table:	Comparing solution	quality of the two	different MINLP	formulations F_1	and F ₂ using BARON
--------	--------------------	--------------------	-----------------	--------------------	--------------------------------

					Formulation			Solution	difference
$ \mathcal{I} $	$ \mathcal{T} $	$ \mathcal{P} $	F	1		F_2		$\Delta y_{i,p,t}^*$ (Rar	nge: 0 - 30)
			Solution Bound	Best F ₁ Feasible Solution	Repaired F ₁ Solution	Solution Bound	Best F ₂ Feasible Solution	$\begin{array}{c} Maximum \\ (\forall i, p, t) \end{array}$	Average $(\forall i, p, t)$
5	5	2	0.171	0.200	0.272	0.208	0.219	5.17	0.47
5	5	2	0.150	0.177	0.228	0.181	0.186	5.04	0.33
5	5	2	0.157	0.175	0.243	0.190	0.198	4.68	0.40
5	10	2	0.255	0.369	0.381	0.325	0.340	0.41	0.06
5	10	2	0.256	0.358	0.388	0.324	0.341	1.33	0.12
5	10	2	0.303	0.377	0.464	0.385	0.399	3.14	0.34
10	10	2	0.357	0.607	0.770	0.637	0.670	4.49	0.32
10	10	2	0.507	0.784	0.954	0.797	0.820	3.84	0.32
10	10	2	0.377	0.692	0.754	0.645	0.675	2.60	0.13
15	10	2	0.656	1.085	1.308	1.100	1.141	3.84	0.30
15	10	2	0.540	0.960	1.053	0.903	0.945	2.16	0.14
15	10	2	0.552	1.033	1.090	0.901	0.940	1.01	0.08

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Table: Comparing gaps of F_1 (with BARON) with MIP formulations (with Gurobi) of F_2 on large instances with more than 200 binary variables.

ſ	$ \mathcal{I} $	$ \mathcal{T} $	$ \mathcal{P} $	Bounds	(F ₂)	Best F	2 feasible s	olution	Time (sec) / [Optimality gap (%)]			
				1-SEC	k-SEC	PLA	1-SEC	k-SEC	F_1	PLA	1-SEC	k-SEC
	15	15	2	1394.13	1392.1	1412.07	1417.74	1416.98	[49.5]	[0.86]	[0.77]	[1.01]

・ロン ・回 と ・ ヨン ・ ヨン

Table: Comparing gaps of F_1 (with BARON) with MIP formulations (with Gurobi) of F_2 on large instances with more than 200 binary variables.

$ \mathcal{I} $	$ \mathcal{T} $	$ \mathcal{P} $	Bounds	(F ₂)	Best F	F ₂ feasible so	olution	Time (sec) / [Optimality gap (%)]			
			1-SEC	k-SEC	PLA	1-SEC	k-SEC	F_1	PLA	1-SEC	k-SEC
15	15	2	1394.13	1392.1	1412.07	1417.74	1416.98	[49.5]	[0.86]	[0.77]	[1.01]

・ロン ・回 と ・ ヨン ・ ヨン

Table: Comparing gaps of F_1 (with BARON) with MIP formulations (with Gurobi) of F_2 on large instances with more than 200 binary variables.

$ \mathcal{I} $	$ \mathcal{T} $	$ \mathcal{P} $	Bounds	(F ₂)	Best F	2 feasible s	Time (sec) / [Optimality gap (%)]				
			1-SEC	k-SEC	PLA	1-SEC	k-SEC	F_1	PLA	1-SEC	k-SEC
15	15	2	1394.13	1392.1	1412.07	1417.74	1416.98	[49.5]	[0.86]	[0.77]	[1.01]

・ロン ・回と ・ヨン ・ヨン

Table: Comparing gaps of F_1 (with BARON) with MIP formulations (with Gurobi) of F_2 on large instances with more than 200 binary variables.

Γ	$ \mathcal{I} $	$ \mathcal{T} $	$ \mathcal{P} $	Bounds	(F ₂)	Best F	F ₂ feasible so	olution	Time (sec) / [Optimality gap (%)]			
				1-SEC	k-SEC	PLA	1-SEC	k-SEC	F_1	PLA	1-SEC	k-SEC
	15	15	2	1394.13	1392.1	1412.07	1417.74	1416.98	[49.5]	[0.86]	[0.77]	[1.01]

・ロン ・回と ・ヨン ・ヨン

Table: Comparing gaps of F_1 (with BARON) with MIP formulations (with Gurobi) of F_2 on large instances with more than 200 binary variables.

$ \mathcal{I} $	$ \mathcal{T} $	$ \mathcal{P} $	Bounds	(F ₂)	Best I	2 feasible s	olution	Time	(sec) / [O	otimality ga	ар (%)]
			1-SEC	k-SEC	PLA	1-SEC	k-SEC	F_1	PLA	1-SEC	k-SEC
15	15	2	1394.13	1392.1	1412.07	1417.74	1416.98	[49.5]	[0.86]	[0.77]	[1.01]
15	15	4	1391.38	1385.82	1432.00	1431.74	1436.59	[50.2]	[1.60]	[1.41]	[1.62]
15	15	6	1283.03	1271.9	1326.2	1335.69	1330.13	[81.2]	[1.97]	[1.89]	[2.23]
15	20	2	1465.65	1465.4	1500.92	1510.79	1498.87	[53.0]	[1.90]	[1.67]	[1.72]
15	20	4	1573.95	1571.02	1663.04	1665.75	1691.03	[63.9]	[2.56]	[2.39]	[2.86]
15	20	6	1614.51	1608.73	1691.04	1691.4	1696.03	[83.1]	[3.12]	[2.71]	[3.09]
20	20	2	2185.07	2184.68	2245.19	2247.45	2254.25	[58.2]	[1.93]	[1.98]	[2.14]
20	20	2	1865.12	1863.33	1906.58	1906.93	1905.17	[49.1]	[1.24]	[1.46]	[1.57]
20	20	6	2058.69	2042.32	2163.22	2183.31	2185.59	-	[3.05]	[3.15]	[3.60]
25	25	2	3274.29	3270.23	3383.73	3381.22	3383.53	-	[2.28]	[2.35]	[2.63]
25	25	4	3222.66	3223.06	3417.42	3413.46	3437.34	[83.0]	[3.93]	[3.60]	[3.96]
25	25	6	2973.45	2963.5	4465.04	3919.11	4510.94	[83.2]	[32.2]	[22.9]	[33.6]

Comparing Algorithms: Large Instances

Table: Comparing gaps of F_1 (with BARON) with MIP formulations (with Gurobi) of F_2 on large instances with more than 200 binary variables.

$ \mathcal{I} $	$ \mathcal{T} $	$ \mathcal{P} $	Bounds (F_2)		Best F_2 feasible solution			Time (sec) / [Optimality gap (%)]			
			1-SEC	k-SEC	PLA	1-SEC	k-SEC	F_1	PLA	1-SEC	k-SEC
15	15	2	1394.13	1392.1	1412.07	1417.74	1416.98	[49.5]	[0.86]	[0.77]	[1.01]
15	15	4	1391.38	1385.82	1432.00	1431.74	1436.59	[50.2]	[1.60]	[1.41]	[1.62]
15	15	6	1283.03	1271.9	1326.2	1335.69	1330.13	[81.2]	[1.97]	[1.89]	[2.23]
15	20	2	1465.65	1465.4	1500.92	1510.79	1498.87	[53.0]	[1.90]	[1.67]	[1.72]
15	20	4	1573.95	1571.02	1663.04	1665.75	1691.03	[63.9]	[2.56]	[2.39]	[2.86]
15	20	6	1614.51	1608.73	1691.04	1691.4	1696.03	[83.1]	[3.12]	[2.71]	[3.09]
20	20	2	2185.07	2184.68	2245.19	2247.45	2254.25	[58.2]	[1.93]	[1.98]	[2.14]
20	20	2	1865.12	1863.33	1906.58	1906.93	1905.17	[49.1]	[1.24]	[1.46]	[1.57]
20	20	6	2058.69	2042.32	2163.22	2183.31	2185.59	-	[3.05]	[3.15]	[3.60]
25	25	2	3274.29	3270.23	3383.73	3381.22	3383.53	-	[2.28]	[2.35]	[2.63]
25	25	4	3222.66	3223.06	3417.42	3413.46	3437.34	[83.0]	[3.93]	[3.60]	[3.96]
25	25	6	2973.45	2963.5	4465.04	3919.11	4510.94	[83.2]	[32.2]	[22.9]	[33.6]

・ロン ・回 と ・ ヨ と ・ ヨ と

Comparing Algorithms: Large Instances

Table: Comparing gaps of F_1 (with BARON) with MIP formulations (with Gurobi) of F_2 on large instances with more than 200 binary variables.

$ \mathcal{I} $	$ \mathcal{T} $	$ \mathcal{P} $	Bounds (F_2)		Best F_2 feasible solution			Time (sec) / [Optimality gap (%)]			
			1-SEC	k-SEC	PLA	1-SEC	k-SEC	F_1	PLA	1-SEC	k-SEC
15	15	2	1394.13	1392.1	1412.07	1417.74	1416.98	[49.5]	[0.86]	[0.77]	[1.01]
15	15	4	1391.38	1385.82	1432.00	1431.74	1436.59	[50.2]	[1.60]	[1.41]	[1.62]
15	15	6	1283.03	1271.9	1326.2	1335.69	1330.13	[81.2]	[1.97]	[1.89]	[2.23]
15	20	2	1465.65	1465.4	1500.92	1510.79	1498.87	[53.0]	[1.90]	[1.67]	[1.72]
15	20	4	1573.95	1571.02	1663.04	1665.75	1691.03	[63.9]	[2.56]	[2.39]	[2.86]
15	20	6	1614.51	1608.73	1691.04	1691.4	1696.03	[83.1]	[3.12]	[2.71]	[3.09]
20	20	2	2185.07	2184.68	2245.19	2247.45	2254.25	[58.2]	[1.93]	[1.98]	[2.14]
20	20	2	1865.12	1863.33	1906.58	1906.93	1905.17	[49.1]	[1.24]	[1.46]	[1.57]
20	20	6	2058.69	2042.32	2163.22	2183.31	2185.59	-	[3.05]	[3.15]	[3.60]
25	25	2	3274.29	3270.23	3383.73	3381.22	3383.53	-	[2.28]	[2.35]	[2.63]
25	25	4	3222.66	3223.06	3417.42	3413.46	3437.34	[83.0]	[3.93]	[3.60]	[3.96]
25	25	6	2973.45	2963.5	4465.04	3919.11	4510.94	[83.2]	[32.2]	[22.9]	[33.6]

・ロン ・回 と ・ ヨ と ・ ヨ と

Comparing Algorithms: Large Instances

Table: Comparing gaps of F_1 (with BARON) with MIP formulations (with Gurobi) of F_2 on large instances with more than 200 binary variables.

$ \mathcal{I} $	$ \mathcal{T} $	$ \mathcal{P} $	Bounds (F_2)		Best F_2 feasible solution			Time (sec) / [Optimality gap (%)]			
			1-SEC	k-SEC	PLA	1-SEC	k-SEC	F_1	PLA	1-SEC	k-SEC
15	15	2	1394.13	1392.1	1412.07	1417.74	1416.98	[49.5]	[0.86]	[0.77]	[1.01]
15	15	4	1391.38	1385.82	1432.00	1431.74	1436.59	[50.2]	[1.60]	[1.41]	[1.62]
15	15	6	1283.03	1271.9	1326.2	1335.69	1330.13	[81.2]	[1.97]	[1.89]	[2.23]
15	20	2	1465.65	1465.4	1500.92	1510.79	1498.87	[53.0]	[1.90]	[1.67]	[1.72]
15	20	4	1573.95	1571.02	1663.04	1665.75	1691.03	[63.9]	[2.56]	[2.39]	[2.86]
15	20	6	1614.51	1608.73	1691.04	1691.4	1696.03	[83.1]	[3.12]	[2.71]	[3.09]
20	20	2	2185.07	2184.68	2245.19	2247.45	2254.25	[58.2]	[1.93]	[1.98]	[2.14]
20	20	2	1865.12	1863.33	1906.58	1906.93	1905.17	[49.1]	[1.24]	[1.46]	[1.57]
20	20	6	2058.69	2042.32	2163.22	2183.31	2185.59	-	[3.05]	[3.15]	[3.60]
25	25	2	3274.29	3270.23	3383.73	3381.22	3383.53	-	[2.28]	[2.35]	[2.63]
25	25	4	3222.66	3223.06	3417.42	3413.46	3437.34	[83.0]	[3.93]	[3.60]	[3.96]
25	25	6	2973.45	2963.5	4465.04	3919.11	4510.94	[83.2]	[32.2]	[22.9]	[33.6]

・ロン ・回 と ・ ヨ と ・ ヨ と

Defined a non-convex production process involving desirable & undesirable products.

Conclusions

• Problem Description

• Defined a non-convex production process involving desirable & undesirable products.

回 と く ヨ と く ヨ と

æ

• Ratio of by-products to total production increases monotonically.

- Defined a non-convex production process involving desirable & undesirable products.
- Ratio of by-products to total production increases monotonically.
- Methods
 - \bullet Reformulated an existing formulation (F_1) to produce a more accurate formulation(F_2) based on the cumulative product production function.

- Defined a non-convex production process involving desirable & undesirable products.
- Ratio of by-products to total production increases monotonically.
- Methods
 - Reformulated an existing formulation (F $_1$) to produce a more accurate formulation(F $_2$) based on the cumulative product production function.

(< ∃) < ∃)</p>

• Devised scalable MIP approximations & relaxations (PLA, 1-SEC, k-SEC).

- Defined a non-convex production process involving desirable & undesirable products.
- Ratio of by-products to total production increases monotonically.
- Methods
 - Reformulated an existing formulation (F₁) to produce a more accurate formulation(F₂) based on the cumulative product production function.

→ E → < E →</p>

- Devised scalable MIP approximations & relaxations (PLA, 1-SEC, k-SEC).
- Conclusions

- Defined a non-convex production process involving desirable & undesirable products.
- Ratio of by-products to total production increases monotonically.
- Methods
 - Reformulated an existing formulation (F $_1$) to produce a more accurate formulation(F $_2$) based on the cumulative product production function.
 - Devised scalable MIP approximations & relaxations (PLA, 1-SEC, k-SEC).

Conclusions

 $\bullet\,$ Formulation F_2 is a more accurate evaluation of production operations as compared to F_1 .

イロト イヨト イヨト イヨト

- Defined a non-convex production process involving desirable & undesirable products.
- Ratio of by-products to total production increases monotonically.
- Methods
 - Reformulated an existing formulation (F₁) to produce a more accurate formulation(F₂) based on the cumulative product production function.
 - Devised scalable MIP approximations & relaxations (PLA, 1-SEC, k-SEC).

Conclusions

 $\bullet\,$ Formulation F_2 is a more accurate evaluation of production operations as compared to F_1 .

イロン 不同と 不同と 不同と

 $\bullet~\mathsf{F}_2$ is computationally more desirable than F_1 .

E. W. L. Beale and J. A. Tomlin.

Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables.

In J. Lawrence, editor, *Proceedings of the 5th International Conference on Operations Research*, pages 447–454, 1970.

Peter Gruber and Petar Kenderov.
 Approximation of convex bodies by polytopes.
 Rendiconti del Circolo Matematico di Palermo, 31:195–225, 1982.
 10.1007/BF02844354.

< 2 → <