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One slide summary

Problem Description
Production process involves desirable & undesirable products.

Ratio of by-products to total production increases
monotonically.

Non-convex problem.

Contributions

New discrete time MINLP formulation.

MIP Approximation & Relaxation schemes.

Performance evaluation
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Problem Description
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Production Process

The production process creates a mixture of useful products
P+ and by-products P−.

Decisions span a planning horizon T .

Discrete decisions determine the start time of the production
process.

Continuous decisions determine the production profile
evaluated by production functions f (·) and gp(·).
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Production functions

Production function f (·) is a concave function that
determines the maximum production rate as a function of
total production.

Product fraction functions gp(·) evolve monotonically as a
function of the total production.

Total production (vt)

Maximum production rate (f)
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Production functions

Production function f (·) is a concave function that
determines the maximum production rate as a function of
total production.

Product fraction functions gp(·) evolve monotonically as a
function of the total production.

Total production (vt)

Maximum production rate (f)

Total production (vt)

Product fraction (gp)

Useful product
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Production functions

Production function f (·) is a concave function that
determines the maximum production rate as a function of
total production.

Product fraction functions gp(·) evolve monotonically as a
function of the total production.

Total production (vt)

Maximum production rate (f)

Total production (vt)

Product fraction (gp)

Useful product

By-product
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Continuous time formulation

Cumulative production v(t) is calculated using production rate x(t)

v(t) =

∫ t

0
x(s)ds

Mixture production rate is limited by production function f (·)

x(t) ≤ f (v(t))

Product production rates yp(t) calculated by fraction functions
gp(·)

yp(t) = x(t) gp(v(t))

Production profiles are active only after the start time z(t)

v(t) = 0 ∀t < z(t)
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Discrete time MINLP formulations
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Discrete time formulations

Past models have proposed a natural discretization of this
continuous time model.

Continuous time formulation
(F )

v(t) =

∫ t

0
x(s)ds

x(t) ≤ f (v(t))

yp(t) = x(t) gp(v(t))

v(t) = 0 ∀t < z(t)

z(t) :T → {0, 1}, increasing

vt Cumulative production up
to time period t ∈ T .

xt Mixture production during
time period t ∈ T .

yp,t Product p ∈ P production
during time period t ∈ T .

zt Facility on/off decision
variable.
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Formulation F1

How much of product p is produced up to time t?

wp,t
def
=

∑
s≤t

yp,s

=
∑
s≤t

xsgp(vs−1)

Discrete time
formulation (F1 )

vt =
t∑

s=0

xs

xt ≤ ∆t f (vt−1)

yp,t = xt gp(vt−1)

vt ≤ M zt

zt ≥ zt−1
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Alternate formulation

Can we do better?

Can we calculate exactly how much
of product p ∈ P is produced up to
and including time period t ?

wp,t =

∫ t

0
yp(s)ds

=

∫ t

0
x(s) gp(v(s))ds

=

∫ vt

0
gp(v)dv

def
= hp(vt)

Continuous time
formulation (F )

v(t) =

∫ t

0
x(s)ds

x(t) ≤ f (v(t))

yp(t) = x(t) gp(v(t))

v(t) = 0 ∀t < z(t)

z(t) :T → {0, 1}, inc
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Alternate formulation

Key Idea

Integral of a non-increasing function is concave .

Test
Test

Total production (vt)

Useful product fraction (gp+ )

Total production (vt)

Cumulative useful product (hp+ )
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Alternate formulation

Key Idea

Integral of a non-increasing function is concave .
Integral of a non-decreasing function is convex.

Test

Total production (vt)

By-product fraction (gp− )

Total production (vt)

Cumulative by-product (hp− )
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Alternate formulation

Key Idea

Integral of a non-increasing function is concave .
Integral of a non-decreasing function is convex.
Lets deal with hp(·) instead of gp(·)!

Total production (vt)

Product fraction (gp)

Useful product

By-product

Total production (vt)

Cumulative product (hp)

Useful product

By-product
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Comparing formulations

What have we done so far ?

F1

vt =
t∑

s=0

xs

xt ≤ ∆t f (vt−1)

yp,t = xt gp(vt−1)

vt ≤ M zt

zt ≥ zt−1

F2

vt =
t∑

s=0

xs

xt ≤ ∆t f (vt−1)

yp,t = hp(vt)− hp(vt−1)

vt ≤ M zt

zt ≥ zt−1
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Comparing Formulations

Which formulation is better?

F1

vt =
t∑

s=0

xs

xt ≤ ∆t f (vt−1)

yp,t = xt gp(vt−1)

vt ≤ M zt

zt ≥ zt−1

F2

vt =
t∑

s=0

xs

xt ≤ ∆t f (vt−1)

yp,t = hp(vt)− hp(vt−1)

vt ≤ M zt

zt ≥ zt−1

F2 is a more accurate formulation of F than F1 .
F2 is computationally better because it deals with convex
functions while F1 deals with bivariate functions.
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Comparing Formulations

Which formulation is better?

F2 is a more accurate formulation of F than F1 .

F2 is computationally better because it deals with convex
functions while F1 deals with bivariate functions.

Total production (vt)

Product fraction (gp)

Useful product

By-product

Total production (vt)

Cumulative product (hp)

Useful product

By-product

Srikrishna Sridhar, Jeff Linderoth, James Leudtke SILO Seminars: Feb 1, 2012



MIP Approximations & Relaxations
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Approximations & Relaxations

Mixed Integer Non-Linear Programs (MINLP)

... are slow and hard!

Why MINLP is like Cricket

It goes on forever.

May not produced a result.
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Approximations & Relaxations

But...the MILP force is here

We only need to approximate or relax univariate convex and
concave functions.
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Approximations & Relaxations I

Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise
linearizations.[1]

Pros

‘Close’ to a feasible solution of the MINLP formulation.

Cons

Introduces additional SOS2 variables to branch on.
NOT a relaxation of the original formulation.

Total production (vt)

Maximum production rate (f)

Total production (vt)

Cumulative useful product (gp+ )

Total production (vt)

Cumulative by-product (hp− )
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Specially ordered sets (SOS)

Total production (vt)

[a0 ,f(a0 )]

[a1 ,f(a1 )]

[a2 ,f(a2 )] [a3 ,f(a3 )]

Cumulative useful product (gp+ )

Approximating f (vt)

f (vt) ≈
∑
o∈O

λt,o f (ao)

1 =
∑
o∈O

λt,o

Structure: Only two adjacent
non zeros.

{λt,o |o ∈ O} ∈ S0S2
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Piecewise Linear Approximation (PLA)

F2

vt =
t∑

s=0

xs

xt ≤ ∆t f (vt−1)

yp,t = hp(vt)− hp(vt−1)

vt ≤ M zt

zt ≥ zt−1

Piecewise Linear
Approximation (PLA)

vt =
t∑

s=0

xs

vt =
∑
o∈O

Bo λt,o

xt ≤ ∆t

∑
o∈O

Fo λt,o

yp,t = wp,t − wp,t−1

wp,t =
∑
o∈O

Hp,o λt,o

zt ≥ zt−1

zt =
∑
o∈O

λt,o

{λt,o |o ∈ O} ∈ S0S2
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Approximations & Relaxations II

Secant Relaxation (1-SEC)

Relax all the nonlinear production functions using inner and outer
approximations.[2]

Pros

Relaxation of the original formulation.
Does NOT introduce additional SOS2 variables.

Cons

May not be ‘close’ to a feasible solution of the MINLP
formulation.

Total production (vt)

Maximum production rate (f)

Total production (vt)

Cumulative useful product (hp+ )

Total production (vt)

Cumulative by-product (hp− )
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Secant Relaxation (1-SEC)
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Approximations & Relaxations III

Multiple Secant Relaxation (k-SEC)

Relax all the nonlinear production functions using inner and outer
approximations but use multiple secants instead of a just a single
one.

Pros

‘Close’ to a feasible solution of the MINLP formulation.

Relaxation of the original formulation.

Cons

Introduces additional SOS2 variables to branch on.

Total production (vt)

Cumulative useful product (hp− )

Total production (vt)

Cumulative by-product (hp+ )
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Multiple Secant Relaxation (k-SEC)

Multiple Secant Relaxation (k-SEC)

vt =
t∑

s=0

xs

vt =
∑
o∈O

B̂o λt,o

xt ≤ ∆t

∑
o∈O

F̂o λt,o

yp,t = wp,t − wp,t−1∑
o∈O

Hp,oλt,o ≤ wp,t ≤
∑
o∈O

Ĥp,o λt,o ∀p ∈ P+

∑
o∈O

Hp,oλt,o ≥ wp,t ≥
∑
o∈O

Ĥp,o λt,o ∀p ∈ P−

zt ≥ zt−1

zt =
∑
o∈O

λt,o
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Performance Evaluation
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Experiments

Goals

Impact on formulation accuracy in going from F1 to F2

Impact in solution time in going from F1 to F2 as solved by
our models.

Sample Application

Transportation problem with production facilities manufacturing
products for customers.
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Performance Evaluation
Sample Application

Transportation problem with production facilities I
manufacturing products P+ for customers J .

Demand made by customers are known a priori.
Facility operations follow known production functions.
Facilities incur fixed, operating, transportation and penalty
costs.

Srikrishna Sridhar, Jeff Linderoth, James Leudtke SILO Seminars: Feb 1, 2012



Performance Evaluation
Sample Application

Transportation problem with production facilities I
manufacturing products P+ for customers J .
Demand made by customers are known a priori.

Facility operations follow known production functions.
Facilities incur fixed, operating, transportation and penalty
costs.

Srikrishna Sridhar, Jeff Linderoth, James Leudtke SILO Seminars: Feb 1, 2012



Performance Evaluation
Sample Application

Transportation problem with production facilities I
manufacturing products P+ for customers J .
Demand made by customers are known a priori.
Facility operations follow known production functions.

Facilities incur fixed, operating, transportation and penalty
costs.

Srikrishna Sridhar, Jeff Linderoth, James Leudtke SILO Seminars: Feb 1, 2012



Performance Evaluation
Sample Application

Transportation problem with production facilities I
manufacturing products P+ for customers J .
Demand made by customers are known a priori.
Facility operations follow known production functions.
Facilities incur fixed, operating, transportation and penalty
costs.

Srikrishna Sridhar, Jeff Linderoth, James Leudtke SILO Seminars: Feb 1, 2012



Comparing formulations: Small instances

Table: Comparing solution quality of the two different MINLP formulations F1

and F2 using BARON

Formulation Solution difference

|I| |T | |P| F1 F2 ∆y∗i,p,t (Range : 0− 30)

Solution
Bound

Best F1
Feasible
Solution

Repaired
F1
Solution

Solution
Bound

Best F2
Feasible
Solution

Maximum
(∀i, p, t)

Average
(∀i, p, t)

5 5 2
0.171 0.200 0.272 0.208 0.219 5.17 0.47

0.2 0.4 0.6 0.8

Total Production (vt)

0.0

0.2

0.4

0.6

0.8

1.0

Useful product fraction (gp+ )

F1

F2

0.2 0.4 0.6 0.8

Total Production (vt)

0.0

0.2

0.4

0.6

0.8

1.0

By-product fraction (gp− )

F1

F2
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Table: Comparing solution quality of the two different MINLP formulations F1

and F2 using BARON

Formulation Solution difference

|I| |T | |P| F1 F2 ∆y∗i,p,t (Range : 0− 30)

Solution
Bound

Best F1
Feasible
Solution

Repaired
F1
Solution

Solution
Bound

Best F2
Feasible
Solution

Maximum
(∀i, p, t)

Average
(∀i, p, t)

5 5 2
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Comparing formulations: Small instances

Table: Comparing solution quality of the two different MINLP formulations F1 and F2 using BARON

Formulation Solution difference

|I| |T | |P| F1 F2 ∆y∗i,p,t (Range : 0− 30)

Solution
Bound

Best F1
Feasible
Solution

Repaired
F1
Solution

Solution
Bound

Best F2
Feasible
Solution

Maximum
(∀i, p, t)

Average
(∀i, p, t)

5 5 2 0.171 0.200 0.272 0.208 0.219 5.17 0.47

5 5 2 0.150 0.177 0.228 0.181 0.186 5.04 0.33

5 5 2 0.157 0.175 0.243 0.190 0.198 4.68 0.40

5 10 2 0.255 0.369 0.381 0.325 0.340 0.41 0.06

5 10 2 0.256 0.358 0.388 0.324 0.341 1.33 0.12

5 10 2 0.303 0.377 0.464 0.385 0.399 3.14 0.34

10 10 2 0.357 0.607 0.770 0.637 0.670 4.49 0.32

10 10 2 0.507 0.784 0.954 0.797 0.820 3.84 0.32

10 10 2 0.377 0.692 0.754 0.645 0.675 2.60 0.13

15 10 2 0.656 1.085 1.308 1.100 1.141 3.84 0.30

15 10 2 0.540 0.960 1.053 0.903 0.945 2.16 0.14

15 10 2 0.552 1.033 1.090 0.901 0.940 1.01 0.08
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Comparing MIP schemes: Large instances

Table: Comparing gaps of F1 (with BARON) with MIP formulations (with Gurobi) of F2 on large instances
with more than 200 binary variables.

|I| |T | |P| Bounds ( F2 ) Best F2 feasible solution Time (sec) / [Optimality gap (%)]

1-SEC k-SEC PLA 1-SEC k-SEC F1 PLA 1-SEC k-SEC

15 15 2 1394.13 1392.1 1412.07 1417.74 1416.98 [49.5] [0.86] [0.77] [1.01]
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Comparing MIP schemes: Large instances

Table: Comparing gaps of F1 (with BARON) with MIP formulations (with Gurobi) of F2 on large instances
with more than 200 binary variables.

|I| |T | |P| Bounds ( F2 ) Best F2 feasible solution Time (sec) / [Optimality gap (%)]

1-SEC k-SEC PLA 1-SEC k-SEC F1 PLA 1-SEC k-SEC

15 15 2 1394.13 1392.1 1412.07 1417.74 1416.98 [49.5] [0.86] [0.77] [1.01]

15 15 4 1391.38 1385.82 1432.00 1431.74 1436.59 [50.2] [1.60] [1.41] [1.62]

15 15 6 1283.03 1271.9 1326.2 1335.69 1330.13 [81.2] [1.97] [1.89] [2.23]

15 20 2 1465.65 1465.4 1500.92 1510.79 1498.87 [53.0] [1.90] [1.67] [1.72]

15 20 4 1573.95 1571.02 1663.04 1665.75 1691.03 [63.9] [2.56] [2.39] [2.86]

15 20 6 1614.51 1608.73 1691.04 1691.4 1696.03 [83.1] [3.12] [2.71] [3.09]

20 20 2 2185.07 2184.68 2245.19 2247.45 2254.25 [58.2] [1.93] [1.98] [2.14]

20 20 2 1865.12 1863.33 1906.58 1906.93 1905.17 [49.1] [1.24] [1.46] [1.57]

20 20 6 2058.69 2042.32 2163.22 2183.31 2185.59 - [3.05] [3.15] [3.60]

25 25 2 3274.29 3270.23 3383.73 3381.22 3383.53 - [2.28] [2.35] [2.63]

25 25 4 3222.66 3223.06 3417.42 3413.46 3437.34 [83.0] [3.93] [3.60] [3.96]

25 25 6 2973.45 2963.5 4465.04 3919.11 4510.94 [83.2] [32.2] [22.9] [33.6]
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Comparing Algorithms: Large Instances

Table: Comparing gaps of F1 (with BARON) with MIP formulations (with Gurobi) of F2 on large instances
with more than 200 binary variables.
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Conclusions

Problem Description
Defined a non-convex production process involving desirable &
undesirable products.

Ratio of by-products to total production increases
monotonically.

Methods

Reformulated an existing formulation (F1 ) to produce a more
accurate formulation(F2 ) based on the cumulative product
production function.

Devised scalable MIP approximations & relaxations (PLA,
1-SEC, k-SEC).

Conclusions

Formulation F2 is a more accurate evaluation of production
operations as compared to F1 .

F2 is computationally more desirable than F1 .
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