THETIS: An approximate solver for large scale combinatorial problems

Srikrishna Sridhar*, Ji Liu, Victor Bittorf, Christopher Re, Stephen J. Wright

University of Wisconsin, Madison

srikris@cs.wisc.edu

objective

solve large combinatorial problems

- ★ Several practical problems in **marketing**, **machine learning** and **data analysis** can be formulated as a combinatorial optimization problem.
- In many of these applications, approximate solutions produce competitive quality metrics in comparison with exact solutions.

In this work, we provide both **novel theory** and parallel **algorithms** targeted at solving large combinatorial problems approximately. Our solver find approximate LP solutions on **average 10x faster** than commercial solvers on three different classes of problems.

background

Linear programming rounding is a **4 step scheme** used to approximate hard combinatorial problems

example

the vertex cover problem

find a set of vertices that cover the graph

Integer Program (IP)

$$\min \sum_{v \in V} x_v \quad \text{s.t}$$

$$x_u + x_v \ge 1 \qquad \forall (u, v) \in E$$

$$x_v \in \{0, 1\} \quad \forall v \in V$$

Relaxed Linear Program (LP) $\min \sum x_v \text{ s.t}$

$$x_{v} \in V$$
 $x_{v} + x_{v} \geq 1$ $\forall (u, v) \in E$
 $x_{v} \in [0, 1]$ $\forall v \in V$

For vertex cover, the rounded solution of the LP is at most 2 times worse than the optimal solution of the IP!

vertex cover has an approximation factor of 2!

combinatorial problems

multiway cut

Problem Family	Approximation Factor	Applications
Set Covering	K or log(n)	Advertising, Classification, Tracking
Independent Set	eK + o(K)	MAP-Inference, Language Processing
Multiway Cut	1.5 - 1/K	Entity resolution, Computer vision
Graphical Models	Heuristic	Clustering, Role labeling

main result

★ We can round an approximate solutions to LPs (instead of exact solutions) without losing out on quality.

$$\min c^T x \quad \text{s.t}$$

$$Ax = b, \ x \ge 0$$

definition We define **x** to be an (ϵ, δ) approximate LP solution if

Its objective is at most δ away from the optimal objective.

$$|c^T x - c^T x^*| \le \delta c^T x^*$$

 \bigstar It is at most ϵ away from feasibility

$$||Ax - b||_{\infty} \le \epsilon$$

rounding approximation LP solutions are good enough!

novel theory

Approximate LP solutions

- ★ we use a quadratic penalty (QP) formulation for LPs
- we solve the QPs with a parallel co-ordinate decent method which is ideal for large datasets
- we use reneger's perturbation theory to show that the quadratic penalty solutions are approximate LP solutions!
- we derive convergence rates that translate to worst case running times for approximating the three combinatorial problems.

Quadratic penalty formulation (easy)

novel implementation

We compare our solver against a state-of-the-art commercial LP solver. We use anonymized graphs obtained from social networking websites with millions of nodes and billions of edges.

- Our solver is on average 10x faster than Cplex (v 12.5) on vertex cover and independent set.
- Commercial solver are unable to solve any of the **multiway** cut problems in 3600 seconds!
- → Our solver produces solutions with comparable objective functions.

maximization problems

	Vertex Cover						
Dataset	Cplex		Thetis				
	Solution	Time (s)	Solution	Time (s)			
Amazon	2.54e+5	22.2	2.59e+5	4.65			
DBLP	2.76e+5	20.7	2.76e+5	3.21			
Google+	1.89e+5	61.8	1.92e+5	6.17			
	Multiway Cut						
Dataset	Cplex		Thetis				
	Solution	Time (s)	Solution	Time (s)			
Amazon	-	_	14	131.4			
DBLP	-	_	18	158.3			
Google+	-	_	345	570.1			

minimization problems

	Dataset	Independent Set				
		Cplex		Thetis		
		Solution	Time (s)	Solution	Time (s)	
	Amazon	2.04e+4	24.4	2.04e+4	4.8	
	DBLP	1.34e+4	21.1	1.34e+4	3.1	
	Google+	7.57e+3	46.1	7.21e+3	6.0	