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One Slide Summary

* Applications

* Optimization toolbox Example

— Linear Programming
— Support Vector Machines (SVM)
— Linear Systems

* Asynchronous Algorithms
e Performance Evaluation
e Future work



One Slide Motivation

Optimization provides a powerful toolbox for
data analysis and machine learning problems.
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Linear Systems

Seismic imaging process

Data collection from seismic
survey

Data pre-processing

Choosing modeling
methodology

Inverse model to fit data
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Combinatorial Optimization

‘ Static customer (known at t=0) — I|nitial route plan

@ Dynamic customer (at t>0) — .9 New route segment



Image Processing

Pictures of natural objects are not random!
They usually have areas of non-constant intensity with sharp edges.




Optimization

Several problems in data analysis, machine
learning and predictive analytics can be posed as
an optimization problem




Optimization 101

Data: Observations (typically known) which we
used to aid decision making.

Decision Variables: The set of decisions that we
are seeking to optimize

Objective: A mathematical quantification of the
qguality of outcomes made by decisions.

Model: The relationship between the decisions
we are trvino to make the niitcome and the



Optimization in Analytics

* BIG DATA

* |[terative: Need to make several passes over
the data.

* Accuracy: Sometimes, approximate is good
enough.

e Structure: Seek solutions with a desired
structure (like simplicity, robustness etc.)



How big is BIG DATA?

Sl. Variables Size Solve Time (s)
Cplex(B) Cplex(S) | Gurobi(B) | Gurobi(S)
1 123 0.2 MB 0.031 0.065 0.081 0.03
2 12596 1.2 GB 5882.5 1690.8 3001.1 2707.8
3 129136 125 GB -- -- -- --
S: Simplex

B: Barrier (Interior point method)

Note: -- indicates timed out at 2 hours
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Gradient Descent Methods
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Gradient Methods

Computing the gradient .
requires an entire pass 111111 L
on the data!

We need to make several

Gradient
passes over the data. \

Hard to parallelize LThil1 — Tk — &ka($k)

Step Size



Co-ordinate Descent Methods
(Nestrov 2010)

| min ﬂazl

Gradient along a co-ordinate
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Update only a single co-ordinate



Co-ordinate Descent Methods

Computing the ‘partial’
gradient requires only a
single row (or column) of

min f(x

the data!
Gradient along a co-ordinate
Converges slowly. We \
need several passes over . ,
(2 _ 1 .

Possible to parallelize /

Update only a single co-ordinate
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Stochastic Gradient Methods

Computing the partial
gradients are cheap!

Converges very slowly. o
We need several passes radient of a single function

over the data. \

Possible to parallelize LThtr1 = T — Oékai (.Cl’:k)

/

Update only a single co-ordinate



Parallel Co-ordinate Descent

Methods

Each core grabs a centrally
located x, evaluates the
gradient and then writes the
update back to x.

Updates may be old by the
time they are applied.

Processors don’t overwrite
each other’s work.
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Parallel Co-ordinate Descent
Methods

Each processor

Read the current state of
xk

Compute the gradient
along the

vV f(@k)li

\ . Pick a co-ordinate i




Parallel Co-ordinate Descent
Methods

Global locking: Lock the shared memory x for
reading and writing operations. Cores acquire

the lock in a round robin fashion. (Langford
2009)

Global locking: Lock the shared memory x for
reading and writing operations. Cores acquire a
lock in any order.

Asvnchronous: No locking! Cores may overwrite



Comparison of Parallel SCD
schemes
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Algorithmic & Implementation
Speedups
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What does Async buy us?

SI. Variables Size Solve Time (s)
Cplex(B) | Cplex(S) | Gurobi(B) | Gurobi(S) Us
1 123 0.2 MB 0.031 0.065 0.081 0.03 0.05
2 12596 1.2 GB 5882.5 1690.8 3001.1 2707.8 6.9
3 129136 125 GB -- -- -- -~ 686.9
S: Simplex

B: Barrier (Interior point method)

Note: -- indicates timed out at 2 hours




Extreme Linear Programming

Can we leverage async algorithms for large scale
combinatorial problems?




LP Rounding

[Formulate Integer Program (IP)}
[ Relax IP to form a

Linear Program (LP) J difficult
step!

<

[ Round LP solution }




LP Rounding: Examples
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Results: Quality & Speed
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Solution quality = Rounded solution / Optimal solution
Results reported on Vertex cover



Results: Quality & Speed

Instance type | Cplex IP  Cplex LP  Us
frb59-26-1 VC - 5.1 0.65
Amazon VC 44 22 4.7

DBLP VC 23 21 3.2
Google+ VC - 62 6.2
LiveJournal VC - - 034
frb59-26-1 MC 54 360 29
Amazon MC - - 131
DBLP MC - - 158
Google+ MC - - 570

Note: - indicates timed out at 1 hours



Conclusion

Optimization provides a powerful toolbox for
data analysis and machine learning problems.
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