Solving combinatorial problems at scale

Srikrishna Sridhar

www.cs.wisc.edu/~srikris

Joint work with
Victor Bittorf, Ji Liu, Stephen J. Wright, Chris Ré

One Slide Summary

- Applications
- Optimization toolbox Example
 - Linear Programming
 - Support Vector Machines (SVM)
 - Linear Systems
- Asynchronous Algorithms
- Performance Evaluation
- Future work

One Slide Motivation

Optimization provides a powerful toolbox for data analysis and machine learning problems.

Systems interactions with optimization research <u>Multicore and clusters</u>

Take away message

Asynchronous algorithms are the key to speedups in modern architectures.

Classification: SVM

Matrix Completion

Matrix Completion

Linear Systems

Seismic imaging process

- Data collection from seismic survey
- 2. Data pre-processing
 - Choosing modeling methodology
- 4. <u>Inverse model to fit data</u>

$$Ax = b$$

Slide Source: Rashmi Raghu

Combinatorial Optimization

Image Processing

Pictures of natural objects are not random!

They usually have areas of non-constant intensity with sharp edges.

Optimization

Several problems in data analysis, machine learning and predictive analytics can be posed as an <u>optimization problem</u>

Optimization 101

Data: Observations (typically known) which we used to aid decision making.

Decision Variables: The set of decisions that we are seeking to optimize

Objective: A mathematical quantification of the quality of outcomes made by decisions.

Model: The relationship between the decisions we are trying to make, the outcome and the

Optimization in Analytics

BIG DATA

 Iterative: Need to make several passes over the data.

 Accuracy: Sometimes, approximate is good enough.

 Structure: Seek solutions with a desired structure (like simplicity, robustness etc.)

How big is BIG DATA?

SI.	Variables	Size	Solve Time (s)			
			Cplex(B)	Cplex(S)	Gurobi(B)	Gurobi(S)
1	123	0.2 MB	0.031	0.065	0.081	0.03
2	12596	1.2 GB	5882.5	1690.8	3001.1	2707.8
3	129136	125 GB				

S: Simplex

B: Barrier (Interior point method)

Note: -- indicates timed out at 2 hours

How big is BIG DATA?

SI.	Variables	Size	Solve Time (s)			
			Cplex(B)	Cplex(S)	Gurobi(B)	Gurobi(S)
1	123	0.2 MB	0.031	0.065	0.081	0.03
2	12596	1.2 GB	5882.5	1690.8	3001.1	2707.8
3	129136	125 GB				

S: Simplex

B: Barrier (Interior point method)

Note: -- indicates timed out at 2 hours

How big is BIG DATA?

SI.	Variables	Size	Solve Time (s)			
			Cplex(B)	Cplex(S)	Gurobi(B)	Gurobi(S)
1	123	0.2 MB	0.031	0.065	0.081	0.03
2	12596	1.2 GB	5882.5	1690.8	3001.1	2707.8
3	129136	125 GB				

Gradient Descent Methods

$$\min f(x)$$

Gradient

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$
 Step Size

Gradient Methods

- Computing the gradient requires an entire pass on the data!
- We need to make several passes over the data.
- Hard to parallelize

 $\min f(x)$

Gradient

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

Step Size

Co-ordinate Descent Methods (Nestrov 2010)

$$\min f(x)$$

Gradient along a co-ordinate

$$x_{k+1}^i = x_k^i - \alpha_k [\nabla f(x_k)]_i$$

Co-ordinate Descent Methods

- Computing the 'partial' gradient requires only a single row (or column) of the data!
- Converges slowly. We need several passes over the data.
- Possible to parallelize

Gradient along a co-ordinate

$$x_{k+1}^i = x_k^i - \alpha_k [\nabla f(x_k)]_i$$

Co-ordinate Descent Methods

- Computing the 'partial' gradient requires only a single row (or column) of the data!
- Converges slowly. We need several passes over the data.
- Possible to parallelize

Gradient along a co-ordinate

$$x_{k+1}^i = x_k^i - \alpha_k [\nabla f(x_k)]_i$$

Stochastic Gradient Methods

- Computing the partial gradients are cheap!
- Converges very slowly.
 We need several passes over the data.
- Possible to parallelize

Gradient of a single function

$$x_{k+1} = x_k - \alpha_k \nabla f_i(x_k)$$

Parallel Co-ordinate Descent Methods

- Each core grabs a centrally located x, evaluates the gradient and then writes the update back to x.
- Updates may be old by the time they are applied.
- Processors don't overwrite each other's work.

Parallel Co-ordinate Descent Methods

Each processor

Pick a co-ordinate i Read the current state of

xk

Compute the gradient along the

$$[\nabla f(x_k)]_i$$

Parallel Co-ordinate Descent Methods

Global locking: Lock the shared memory x for reading and writing operations. Cores acquire the lock in a round robin fashion. (Langford 2009)

Global locking: Lock the shared memory x for reading and writing operations. Cores acquire a lock in any order.

Asynchronous: No locking! Cores may overwrite

Comparison of Parallel SCD schemes

Algorithmic & Implementation Speedups

What does Async buy us?

SI.	Variables	Size	Solve Time (s)				
			Cplex(B)	Cplex(S)	Gurobi(B)	Gurobi(S)	Us
1	123	0.2 MB	0.031	0.065	0.081	0.03	0.05
2	12596	1.2 GB	5882.5	1690.8	3001.1	2707.8	6.9
3	129136	125 GB					686.9

S: Simplex

B: Barrier (Interior point method)

Note: -- indicates timed out at 2 hours

Extreme Linear Programming

Can we leverage async algorithms for large scale combinatorial problems?

LP Rounding

LP Rounding: Examples

Results: Quality & Speed

Solution quality = Rounded solution / Optimal solution Results reported on Vertex cover

Results: Quality & Speed

instance	type	Cplex IP	Cplex LP	Us
frb59-26-1	VC	-	5.1	0.65
Amazon	VC	44	22	4.7
DBLP	VC	23	21	3.2
Google +	VC	_	62	6.2
LiveJournal	VC	-	-	934
frb59-26-1	MC	54	360	29
Amazon	MC	_	-	131
DBLP	MC	_	-	158
${\sf Google} +$	MC	-	-	570

Note: - indicates timed out at 1 hours

Conclusion

Optimization provides a powerful toolbox for data analysis and machine learning problems.

Take away message

Asynchronous algorithms may be the key to speedups in modern architectures.