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One slide summary

» Problem Description
> Production process involves desirable & undesirable products.

> Ratio of byproducts to total production increases monotonically.

> Non-convex problem.

» Contributions
> New discrete time MINLP formulation.

> 3 MIP Approximation & Relaxation schemes.

> Formulation strengthening.

» Performance evaluation
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Production Process

v

The production process creates a mixture of useful products P and byproducts P~.

v

Decisions span a planning horizon 7.

v

Discrete decisions determine the start time of the production process.

» Continuous decisions determine the production profile evaluated by production
functions f(-) and gp(-).
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Production functions

» Production function f(-) is a concave function that determines the maximum
production rate as a function of total production.
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Production functions

» Production function f(-) is a concave function that determines the maximum
production rate as a function of total production.

» Product fraction functions g,(-) evolve monotonically as a function of the total
production.

Maximum production rate (f) Product fraction (g,)

— iUseful product
~—  By-product

Total production (v,)
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Continous time formulation

Cumulative production v(t) is calculated using production rate x(t)

v(t) = /Ot x(s)ds
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Cumulative production v(t) is calculated using production rate x(t)

t
v(t) = / x(s)ds
0
Mixture production rate is limited by production function £(-)

x(t) < f(v(1))

Product production rates y,(t) calculated by fraction functions gp(+)

vo(t) = x(t) gp(v(t))
Production profiles are active only after the start time z(t)

v(t) <M z(t)
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Discrete time formulations

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation
(CNT)

x(t) < f(v(t))
vo(t) = x(t) gp(v(t))
v(t) <M z(t)

z(t) T — {0,1}, increasing
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time period t € T.
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Product p € P production dur-
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Discrete time formulations

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation

Discrete time formulation (Fy )
(CNT)

v(t) = /o x(s)ds e ;Xs

x(t) < F(v(2)) - xe < Acf(vi1)
yo(t) = x(t) go(v(t)) Yot = Xt gp(Vi-1)
v(t) <M z(t) vi <Mz
z(t) T — {0,1},increasing 2> 71
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How much product is produced up to time t?
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F1 formulation

How much product is produced up to time t?

ot Discrete time formulation
Wp,t = Z}’p’s (Fl )
s<t
= szgp(vsfl) t
sst vi=x
s=0

Useful product fraction (g, ) By-product fraction (g, )
f 73 -F bz R
Xt S Atf(Vt_l)
o o
o o
Yot = Xt 8p(ve-1)
o o
° ° vi <M z
o 0.2 0.4 06 08 02 04 06 0.8
Total Production (v,) Total Production (v;)

Zt > 7t
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Can we calculate exactly how much of
product p € P is produced up to and
including time period t ?

¢
Wp,t:/ Yp(s)ds
0

[ x) go(vts)as
0

= /0 8gp(v)dv

= ho(ve)

=9
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Alternate formulation
\\ ! 7

25

NS

Key ldea

> Integral of a non-increasing function

is concave.

Useful product fraction (g,+)

Cumulative useful product (k)

-

Total p
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Alternate formulation
\\ ! 7

25

NS

Key ldea

> Integral of a non-increasing function is concave.

> Integral of a non-decreasing function is convex.

By-product fraction (g, )

Cumulative by-product (h, )

Total p
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Alternate formulation

NG

- s
N
S

Key ldea

> Integral of a non-increasing function is concave.

> Integral of a non-decreasing function is convex.

> Lets deal with h, instead of gp!

Product fraction (g,)

Cumulative product (h,)

—+ Useful product
==....By-product

===seful product

—+  By-product

Total production (v,)
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Comparing formulations

What have we done so far ?

Formulation Fq

t
Vi = E Xs
s=0

xr < Atf(vt—l)

Yot = Xt 8p(Ve-1)

IN

|\/|zt

Vi
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Zt Zr—1
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Comparing Formulations
Which formulation is better?

Formulation Fq Formulation F,

t t
Vi = E Xs Ve = E Xs
s=0 s=0

xe < Aef(veo1) xe < A¢f(ve—1)

Yot = Xt gp(ve-1) Yo.t = hp(ve) = hp(ve—1)
vi <M z vi <M z
Zy > Z—1 Zy > Zt—1
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Comparing Formulations

Which formulation is better?

» F5 is a more accurate formulation of CNT than F; .

Useful product fraction (g,+)

By-product fraction (g, )

10f Fyq  wo-LZZ34F) 1
CIF 3 F

0.8 4 osf 4

06 4 osf 4

0.4 4 oaf 4

0.2 4 o2 4

0 0 4,

Srikrishna Sridhar (UW-Madison)

0.2 0.4 0.6
Total Production (v,)

0.8

0.2 0.4 0.6
Total Production (v,)

0.8
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Comparing Formulations

Which formulation is better?

» F5 is a more accurate formulation of CNT than F; .

» F; is computationally better because it deals with convex functions while F; deals

with bilinear terms.

Product fraction (g,)

— Useful praduct
L —....By-product

Cumulative product (k)

~=+Useful product
—+ By-product

Total production (v,)
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MIP Approximation & Relaxations
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Approximations & Relaxations

Mixed Integer Non-Linear Programs (MINLP)

. are slow and hard!
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Approximations & Relaxations

Mixed Integer Non-Linear Programs (MINLP)
. are slow and hard!

But...there is hope

We only need to approximate or relax univariate convex and concave functions.
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Approximations & Relaxations |

Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations.

Maximum production rate (f) Cumulative useful product (g,-) Cumulative by-product (h,

=S
N /r/ -
\\ B -
Total production (v,) Total production (v,) Total production (v,)
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» Pros
> ‘Close’ to a feasible solution of the MINLP formulation.
» Cons
> Introduces additional SOS2 variables to branch on.
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Approximations & Relaxations |

Piecewise Linear Approximation (PLA)
Approximate all the nonlinear production functions with piecewise linearizations.
» Pros
> ‘Close’ to a feasible solution of the MINLP formulation.
» Cons

> Introduces additional SOS2 variables to branch on.
» NOT a relaxation of the original formulation.

Maximum production rate (f) Cumulative useful product (g,-) Cumulative by-product (h,

D /u/j v
\\ B / -
Total production (v,) Total production (v,) Total production (v,)
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Piecewise Linear Approximation (PLA)

Piecewise Linear Approximation
(PLA)

t
Ve = E Xs
s=0

Formulation F,

t
Vi = E Xs
s=0
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Piecewise Linear Approximation (PLA)

Formulation F,

t
Vi = E Xs
s=0

xr < Atf(Vt—l)

Srikrishna Sridhar (UW-Madison)

Piecewise Linear Approximation
(PLA)

t
Vi = E Xs
s=0
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Xt S At Z Fo >\t,o
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Piecewise Linear Approximation (PLA)

Piecewise Linear Approximation

(PLA)
Formulation F, t
Vi = ZXS
s=0
t
— Ve = Bo At o
w=>x D Bo
—0 ocO
Xt S At Z Fo >\t,o
Xe < Aef(veo1) °€0
Yp,t = Wp,t — Wpt—1
Yp,t = hP(Vt) - hP(Vf—l) Wpt = Z Hp,o )\L,o
ocO
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Piecewise Linear Approximation (PLA)

Piecewise Linear Approximation

(PLA)
Formulation F, t
Vi = ZXS
s=0
t
Vi = ZXS Vi = Z Bs Ato
—0 ocO
xr < A Z Fo >\t,o
Xxe < A¢f(veo1) 0€0
Yp,t = Wp,t — Wp,t—1
Yp,t = hP(Vt) - hP(Vt—l) Wpt = Z Hp,o )\L,o
ocO
Vi S M Zt Vi S M Zt
Ze 2 Zt—1
Z 2 Z—1 122)\“7
ocO

{At,0]0 € O} € S0S2
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Specially ordered sets (SOS)

Cumulative useful product (g,+)

L | :[a, 9n (ay)] [ats 9 (as)

=
%
-
-

lay.g,(a)}>"
A

lag,g,6a0)] | H H
Total production (v,)

Approximating g,(v¢)

&p(wve) = Z At,08p(20)

ocO



Specially ordered sets (SOS)

Cumulative useful product (g,+)

L | lay 9p (a2)] [ats I (as)

=
%
-
-

[a.g,(a Y- ;
z

Lag.g,(a¢)] H H H
Total production (v,)

Approximating g,(v¢)

gp(ve) = Z At,08p(20)
ocO
1=2 Ao
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Specially ordered sets (SOS)

Cumulative useful product (g,+)

L : la, 9p (a)] [atfi ’g—p (a3)

[a.g,(a Y- ;
z

Lag.g,(a¢)] H H H
Total production (v,)

Approximating g,(v¢)

gp(ve) = Z At,08p(20)
ocO
1=2 Ao
ocO

Structure: Only two adjacent non
zeros.



Specially ordered sets (SOS)

Cumulative useful product (g,+)

I . layg, ()] [49 ()

=
-
-

[a.g,(a Y- ;
z

Lag.g,(a¢)] H H H
Total production (v,)

Approximating g,(v)

gp(ve) = Z At,08p(20)
ocO
1=2 Ao
ocO

Structure: Only two adjacent non
zeros.
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Approximations & Relaxations Il

Secant Relaxation (1-SEC)

Relax all the nonlinear production functions using inner and outer approximations

Maximum production rate (f) Cumulative useful product (h,-) Cumulative by-product (h,
\\, - k¥ vy :
S e EI ;
v == >
X . ,/
N T i
.
v 7
Total production (v,) Total production (v,) Total production (v,)
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Approximations & Relaxations Il

Secant Relaxation (1-SEC)
> Pros

Relax all the nonlinear production functions using inner and outer approximations

> Relaxation of the original formulation.
» Cons

> Does NOT introduce additional SOS2 variables.

> May not be ‘close’ to a feasible solution of the MINLP formulation.

\

Maximum production rate (f) Cumulative useful product (

hy+)

Cumulative by-product (h,

Total production (v,)

Total production (v,)

Total production (v,)
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Secant Relaxation (1-SEC)

Secant Relaxation (1-SEC)

t
Formulation F» Vi = ZXS
s=0

t
Ve = E Xs
s=0

xt < Atf(Vt—l)
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Secant Relaxation (1-SEC)

Formulation Fy

t
Ve = ZXS
s=0
Xt < Atf(Vt—l)

Yot = hp(ve) — hp(ve—1)

Srikrishna Sridhar (UW-Madison)

Secant Relaxation (1-SEC)
t
Vi = ZXS
s=0
Vi = Z éo )\t,o

ocO

Xt S At Z 'A:o )\t,o

i@

Yp,t = Wp,t — Wp,t—1

Wp,t = E Hp,o At,o

ocO

26 / 37



Secant Relaxation (1-SEC)

Formulation Fy
t
Ve = ZXS
s=0
xt < Atf(Vt—l)

Yot = hp(ve) — hp(ve—1)

vi <Mz
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Vi = ZXS
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Yp,t = Wp,t — Wp,t—1
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Approximations & Relaxations Il

Multiple Secant Relaxation (k-SEC)

Relax all the nonlinear production functions using inner and outer approximations but use

multiple secants instead of a just a single one.

Srikrishna Sridhar (UW-Madison)
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Approximations & Relaxations Il

Multiple Secant Relaxation (k-SEC)

Relax all the nonlinear production functions using inner and outer approximations but use

multiple secants instead of a just a single one.

» Pros
> ‘Close’ to a feasible solution of the MINLP formulation.
> Relaxation of the original formulation.

» Cons
> Introduces additional SOS2 variables to branch on.

Cumulative useful product (h,-) Cumulative by-product (h,+)

Total production (v,) Total production (v,)
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Multiple Secant Relaxation (k-SEC)

Multiple Secant Relaxation (k-SEC)

t
Vi = E Xs = E Bo)\t,o
s=0

ocO

Formulation F»
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Multiple Secant Relaxation (k-SEC)

Formulation F»

t
Vi = ZXS

s=0
xx < Atf(Vt—l)

Yp,t = hp(ve) — hp(ve—1)
Vi S M Zt

Ze > Zt—1
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Multiple Secant Relaxation (k-SEC)

t
Vi = ZXS = Z éo )\t,o
s=0

ocO

Yp,t = Wp,t — Wpt—1

Z Hp,o )\t,o < Wp,t < Z }:lp,o )\t,o VP S P+
ocO ocO
Z |:lp‘o )\t,o < Wp,t < Z pro )\t,o VP epP
ocO ocO

Vi S M Z

Ze 2 Ze—1

=Y

ocO
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Trix
SOS2/Hull binary trick

Key ldea

> Production functions are positive only if the facility is open.
> Applies to the 1-SEC, PLA & k-SEC model.
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Trix
SOS2/Hull binary trick

Key ldea

> Production functions are positive only if the facility is open.

> Applies to the 1-SEC, PLA & k-SEC model.

Original Formulation...

Vi = Z Bo >\t,o

o0e®
Wp,t = E Hp,o At,o
oe®
1: E At,o
0O
v < Mz,
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Trix
SOS2/Hull binary trick

Key ldea

> Production functions are positive only if the facility is open.
> Applies to the 1-SEC, PLA & k-SEC model.

riginal Formulation... .
Origi Hiat Stronger Formulation...

Ve = Z Bo >\t,0 Ve = Z Bo )\t,a

o0e®
ocO
Wp,t = E Hp,o At,o
0cO Wp,t = Z Hpo At
ocO

1= At.o
;9 § thz)\t,o

Ve S MZL» ocO
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Performance Evaluation
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Experiments

Goals

» Impact on formulation accuracy in going from F; to F»
> Impact in solution time in going from F; to F» as solved by our models.

> Impact of stronger formulations on solving the MIP approximation/relaxations.

Sample Application

Transportation problem with production facilities manufacturing products for customers.
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Performance Evaluation

» Transportation problem with production facilities Z manufacturing products P* for
customers J.
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Performance Evaluation
» Transportation problem with production facilities Z manufacturing products P* for
customers J.
> Demand made by customers are known a priori.
» Facility operations follow known production functions.

» Facilities incur fixed, operating, transportation and penalty costs.

Srikrishna Sridhar (UW-Madison) 32 /37



Accuracy

Useful product fraction (g,+)

45t 4

Formulation F;

Objective function
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Accuracy

Useful product fraction (g,+)

450 1
Repaired F, solution zZa F
— 5 |

Formulation F,

Formulation F;
3.0

Total Production (v,)

4.0

Objective function
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Formulations

—F, — 1.SEC

— 3-SEC

Fraction of instances

1 5
Gap to best feasible solution (%)
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Trix

[ — strengthening -~ no strengthening]

Multiple secant relaxation (3-SEC)
T —

1Piecewise linear approximation (PLA) Secant relaxation (1-SEC) .
T T i T -
i ’ |
1 ’ 1
I i I
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Conclusions

» Problem Description

> Defined a non-convex production process involving desirable & undesirable products.
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Conclusions

» Problem Description
> Defined a non-convex production process involving desirable & undesirable products.
> Ratio of byproducts to total production increases monotonically.

» Methods

> Reformulated an existing formulation (F1) to produce a more accurate formulation
(F2) based on the cumulative product production function.

> Devised scalable MIP approximations & relaxations (PLA, 1-SEC, k-SEC).

» Conclusions

> F, formulation is a more accurate evaluation of operations as compared to Fj .

> Fj is computationally more tractable than Fj .
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Thats all folks!

Maximum production rate (f) Product fraction (g, Useful product fraction (g, ) By-product fraction (g, )
— iUseful product 1op- 278 Fy
A — _By-produc Y 2%
o
- - RN 0o AT R
Total production (v,) Total production (v,) Total Production (v, Total Production (v,
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