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One slide summary

I Problem Description
I Production process involves desirable & undesirable products.

I Ratio of byproducts to total production increases monotonically.

I Non-convex problem.

I Contributions

I New discrete time MINLP formulation.

I 3 MIP Approximation & Relaxation schemes.

I Formulation strengthening.

I Performance evaluation
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Problem Description
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Production Process

I The production process creates a mixture of useful products P+ and byproducts P−.

I Decisions span a planning horizon T .

I Discrete decisions determine the start time of the production process.

I Continuous decisions determine the production profile evaluated by production
functions f (·) and gp(·).
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Production functions

I Production function f (·) is a concave function that determines the maximum
production rate as a function of total production.

I Product fraction functions gp(·) evolve monotonically as a function of the total
production.

Total production (vt)

Maximum production rate (f)

Total production (vt)

Product fraction (gp)

Useful product
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I Production function f (·) is a concave function that determines the maximum
production rate as a function of total production.

I Product fraction functions gp(·) evolve monotonically as a function of the total
production.

Total production (vt)

Maximum production rate (f)

Total production (vt)

Product fraction (gp)

Useful product

By-product
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Continous time formulation

Cumulative production v(t) is calculated using production rate x(t)

v(t) =

∫ t

0

x(s)ds

Mixture production rate is limited by production function f (·)

x(t) ≤ f (v(t))

Product production rates yp(t) calculated by fraction functions gp(·)

yp(t) = x(t) gp(v(t))

Production profiles are active only after the start time z(t)

v(t) ≤ M z(t)
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Discrete Time Formulations
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Discrete time formulations

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation
(CNT)

v(t) =

∫ t

0

x(s)ds

x(t) ≤ f (v(t))

yp(t) = x(t) gp(v(t))

v(t) ≤ M z(t)

z(t) :T → {0, 1}, increasing

vt Cumulative production up to
time period t ∈ T .

xt Mixture production during time
period t ∈ T .

yp,t Product p ∈ P production dur-
ing time period t ∈ T .

zt Facility on/off decision vari-
able.
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F1 formulation

How much product is produced up to time t?

wp,t
def
=

∑
s≤t

yp,s

=
∑
s≤t

xsgp(vs−1)

Discrete time formulation
(F1 )

vt =
t∑

s=0

xs

xt ≤ ∆t f (vt−1)

yp,t = xt gp(vt−1)

vt ≤ M zt

zt ≥ zt−1
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F1 formulation

How much product is produced up to time t?

wp,t
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=
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0.2 0.4 0.6 0.8

Total Production (vt)

0.0

0.2

0.4

0.6

0.8

1.0

Useful product fraction (gp+ )

F1

0.2 0.4 0.6 0.8

Total Production (vt)

0.0

0.2

0.4

0.6

0.8

1.0

By-product fraction (gp− )

F1
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Alternate formulation

Can we do better?

Can we calculate exactly how much of
product p ∈ P is produced up to and
including time period t ?

wp,t =

∫ t

0

yp(s)ds

=

∫ t

0

x(s) gp(v(s))ds

=

∫ vt

0

gp(v)dv

def
= hp(vt)

Continuous time
formulation (CNT)

v(t) =

∫ t

0

x(s)ds

x(t) ≤ f (v(t))

yp(t) = x(t) gp(v(t))

v(t) ≤ M z(t)

z(t) :T → {0, 1}, inc
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Alternate formulation

Key Idea

I Integral of a non-increasing function is concave.

I Test

I Test

Total production (vt)

Useful product fraction (gp+ )

Total production (vt)

Cumulative useful product (hp+ )
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Alternate formulation

Key Idea

I Integral of a non-increasing function is concave.

I Integral of a non-decreasing function is convex.

I Test

Total production (vt)

By-product fraction (gp− )

Total production (vt)

Cumulative by-product (hp− )
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Alternate formulation

Key Idea

I Integral of a non-increasing function is concave.

I Integral of a non-decreasing function is convex.

I Lets deal with hp instead of gp!

Total production (vt)

Product fraction (gp)

Useful product

By-product

Total production (vt)

Cumulative product (hp)

Useful product

By-product
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Comparing formulations

What have we done so far ?

Formulation F1

vt =
t∑

s=0

xs

xt ≤ ∆t f (vt−1)

yp,t = xt gp(vt−1)

vt ≤ M zt

zt ≥ zt−1

Formulation F2

vt =
t∑

s=0

xs

xt ≤ ∆t f (vt−1)

yp,t = hp(vt)− hp(vt−1)

vt ≤ M zt

zt ≥ zt−1
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Comparing Formulations
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I F2 is a more accurate formulation of CNT than F1 .
I F2 is computationally better because it deals with convex functions while F1 deals

with bilinear terms.
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Comparing Formulations

Which formulation is better?

I F2 is a more accurate formulation of CNT than F1 .

I F2 is computationally better because it deals with convex functions while F1 deals
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MIP Approximation & Relaxations
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Approximations & Relaxations

Mixed Integer Non-Linear Programs (MINLP)

... are slow and hard!

But...there is hope

We only need to approximate or relax univariate convex and concave functions.
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Approximations & Relaxations I

Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations.

I Pros
I ‘Close’ to a feasible solution of the MINLP formulation.

I Cons

I Introduces additional SOS2 variables to branch on.
I NOT a relaxation of the original formulation.

Total production (vt)

Maximum production rate (f)

Total production (vt)

Cumulative useful product (gp+ )

Total production (vt)

Cumulative by-product (hp− )
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Piecewise Linear Approximation (PLA)

Formulation F2

vt =
t∑

s=0

xs

xt ≤ ∆t f (vt−1)

yp,t = hp(vt)− hp(vt−1)

vt ≤ M zt

zt ≥ zt−1

Piecewise Linear Approximation
(PLA)

vt =
t∑

s=0

xs

vt =
∑
o∈O

Bo λt,o

xt ≤ ∆t

∑
o∈O

Fo λt,o

yp,t = wp,t − wp,t−1

wp,t =
∑
o∈O

Hp,o λt,o

vt ≤ M zt

zt ≥ zt−1

1 =
∑
o∈O

λt,o

{λt,o |o ∈ O} ∈ S0S2
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Specially ordered sets (SOS)

Total production (vt)

[a0 ,gp (a0 )]

[a1 ,gp (a1 )]

[a2 ,gp (a2 )] [a3 ,gp (a3 )]

Cumulative useful product (gp+ ) Approximating gp(vt)

gp(vt) ≈
∑
o∈O

λt,ogp(ao)

1 =
∑
o∈O

λt,o

Structure: Only two adjacent non
zeros.

{λt,o |o ∈ O} ∈ S0S2
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Approximations & Relaxations II

Secant Relaxation (1-SEC)

Relax all the nonlinear production functions using inner and outer approximations.

I Pros

I Relaxation of the original formulation.
I Does NOT introduce additional SOS2 variables.

I Cons
I May not be ‘close’ to a feasible solution of the MINLP formulation.

Total production (vt)

Maximum production rate (f)

Total production (vt)

Cumulative useful product (hp+ )

Total production (vt)

Cumulative by-product (hp− )
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Secant Relaxation (1-SEC)

Formulation F2

vt =
t∑

s=0

xs

xt ≤ ∆t f (vt−1)

yp,t = hp(vt)− hp(vt−1)

vt ≤ M zt

zt ≥ zt−1

Secant Relaxation (1-SEC)

vt =
t∑

s=0

xs

vt =
∑
o∈O

B̂o λt,o

xt ≤ ∆t

∑
o∈O

F̂o λt,o

yp,t = wp,t − wp,t−1

wp,t =
∑
o∈O

Ĥp,o λt,o

vt ≤ M zt

zt ≥ zt−1

1 =
∑
o∈O

λt,o
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Approximations & Relaxations III

Multiple Secant Relaxation (k-SEC)

Relax all the nonlinear production functions using inner and outer approximations but use
multiple secants instead of a just a single one.

I Pros
I ‘Close’ to a feasible solution of the MINLP formulation.

I Relaxation of the original formulation.

I Cons

I Introduces additional SOS2 variables to branch on.

Total production (vt)

Cumulative useful product (hp− )

Total production (vt)

Cumulative by-product (hp+ )
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Multiple Secant Relaxation (k-SEC)

Formulation F2

vt =
t∑

s=0

xs

xt ≤ ∆t f (vt−1)

yp,t = hp(vt)− hp(vt−1)

vt ≤ M zt

zt ≥ zt−1

Multiple Secant Relaxation (k-SEC)

vt =
t∑

s=0

xs =
∑
o∈O

B̂o λt,o

yp,t = wp,t − wp,t−1∑
o∈O

Hp,o λt,o ≤ wp,t ≤
∑
o∈O

Ĥp,o λt,o ∀p ∈ P+

∑
o∈O

Ĥp,o λt,o ≤ wp,t ≤
∑
o∈O

Hp,o λt,o ∀p ∈ P−

vt ≤ M zt

zt ≥ zt−1

1 =
∑
o∈O

λt,o

{λt,o |o ∈ O} ∈ S0S2
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Trix
SOS2/Hull binary trick

Key Idea

I Production functions are positive only if the facility is open.

I Applies to the 1-SEC, PLA & k-SEC model.

Original Formulation...

vt =
∑
o∈O

Bo λt,o

wp,t =
∑
o∈O

Hp,o λt,o

1 =
∑
o∈O

λt,o

vt ≤ Mzt

Stronger Formulation...

vt =
∑
o∈O

Bo λt,o

wp,t =
∑
o∈O

Hp,o λt,o

zt =
∑
o∈O

λt,o
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Performance Evaluation
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Experiments

Goals

I Impact on formulation accuracy in going from F1 to F2

I Impact in solution time in going from F1 to F2 as solved by our models.

I Impact of stronger formulations on solving the MIP approximation/relaxations.

Sample Application

Transportation problem with production facilities manufacturing products for customers.

Srikrishna Sridhar (UW-Madison) 31 / 37



Performance Evaluation

I Transportation problem with production facilities I manufacturing products P+ for
customers J .

I Demand made by customers are known a priori.

I Facility operations follow known production functions.

I Facilities incur fixed, operating, transportation and penalty costs.
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Accuracy
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Formulations
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Conclusions

I Problem Description

I Defined a non-convex production process involving desirable & undesirable products.

I Ratio of byproducts to total production increases monotonically.

I Methods

I Reformulated an existing formulation (F1) to produce a more accurate formulation
(F2) based on the cumulative product production function.

I Devised scalable MIP approximations & relaxations (PLA, 1-SEC, k-SEC).

I Conclusions

I F2 formulation is a more accurate evaluation of operations as compared to F1 .

I F2 is computationally more tractable than F1 .
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Thats all folks!
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