Supplement to "Locally Ideal Formulations for Piecewise Linear Functions with Indicator Variables"

Srikrishna Sridhar, Jeff Linderoth, James Luedtke

April 11, 2013

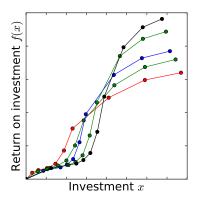
Data generation

The three components of the instances used are the return on investment functions $f_{jk}(\cdot) \forall j \in \mathcal{J} \ k \in \mathcal{K}$, fixed costs $G_j \ \forall j \in \mathcal{J}$ for entering each product market and variable costs $c_{jk} \ \forall j \in \mathcal{J}, \ k \in \mathcal{K}$ per unit of budget allocated for marketing strategy $k \in \mathcal{K}$ of product $j \in \mathcal{J}$. We now describe how each of these components were generated.

Return on investment functions

In our sample application, the return on investment is evaluated by piecewise-linear functions $f_{jk}(\cdot)$ which have the typical form shown in Figure 1.

Figure 1: Sample curves modeling return on investment for five different product/strategy pairs.



Let R(a, b, i, n) denote a random variable that lies between $a + \frac{i(b-a)}{n}$ and $a + \frac{(i+1)(b-a)}{n}$ with a distribution $a + \frac{b-a}{n}(i + \beta(2, 2))$ where $\beta(2, 2)$ is the beta distribution with both parameters set to 2. For each product $j \in \mathcal{J}$, the domain of $f_{jk}(\cdot) \forall k \in \mathcal{K}$ was generated using

$$d_j \sim R(4, 8, j, |\mathcal{J}|)$$

and the range was generated as

$$r_j \sim R(0.5, 1, j, |\mathcal{J}|)$$

where the notation j overloads both the product $j \in \mathcal{J}$ and an unique index for the product between 1 and \mathcal{J} . The desired s-shaped functions were generated by dividing the domain $[0, d_j]$ of $f_{jk}(\cdot) \forall k \in \mathcal{K}$ into three parts such that $f_{jk}(\cdot)$ is concave increasing in $[0, a_{jk}^1]$, convex increasing in $[a_{jk}^1, a_{jk}^2]$ and concave increasing again in $[a_{jk}^2, d_j]$. The random variables a_{jk}^2 and $a_{j,k}^2$ were generated using

$$a_{jk}^{1} \sim d_{j}R(0.1, 0.5, j, |\mathcal{J}|)$$

 $a_{jk}^{2} \sim d_{j}R(0.3, 0.7, j, |\mathcal{J}|).$

The set of breakpoints $B_{jki} \forall i \in \{1...n\}$ were calculating by dividing each of the three domains into approximately $\frac{n}{3}$ equal parts which can be written as

$$B_{jki} = 3i\frac{a_{jk}^1}{n} \qquad i = 1\dots \left\lfloor \frac{n}{3} \right\rfloor$$
$$B_{jki} = a_{jk}^1 + 3i\frac{a_{jk}^2 - a_{jk}^1}{2n} \qquad i = \left\lfloor \frac{n}{3} \right\rfloor + 1\dots \left\lfloor \frac{2n}{3} \right\rfloor$$
$$B_{jki} = a_{jk}^2 + 3i\frac{d_j - a_{jk}^3}{n} \qquad i = \left\lfloor \frac{2n}{3} \right\rfloor + 1\dots n.$$

The corresponding function evaluations $F_{jki} := f_{jk}(B_{jki})$ were generated as

$$F_{jki} = b_{jk}^{1} \sqrt{\frac{B_{jki}}{B_{jk\lfloor\frac{n}{3}\rfloor}}} \qquad i = 1 \dots \lfloor \frac{n}{3} \rfloor$$

$$F_{jki} = F_{jk\lfloor\frac{n}{3}\rfloor} + b_{jk}^{2} \left(\frac{B_{jki} - B_{jk\lfloor\frac{n}{3}\rfloor}}{B_{jk\lfloor\frac{2n}{3}\rfloor} - B_{jk\lfloor\frac{n}{3}\rfloor}}\right)^{2} \qquad i = \lfloor \frac{n}{3} \rfloor + 1 \dots \lfloor \frac{2n}{3} \rfloor$$

$$F_{jki} = F_{jk\lfloor\frac{2n}{3}\rfloor} + b_{jk}^{3} \sqrt{\frac{B_{jki} - B_{jk\lfloor\frac{2n}{3}\rfloor}}{B_{jk\lfloor\frac{2n}{3}\rfloor} - B_{jk\lfloor\frac{n}{3}\rfloor}}} \qquad i = \lfloor \frac{2n}{3} \rfloor + 1 \dots n$$

where b_{jk}^1 , b_{jk}^2 and b_{jk}^3 are random variables distributed by

$$\begin{split} b_{jk}^1 &\sim r_j R(0.05, 0.1, j, |\mathcal{J}|) \\ b_{jk}^2 &\sim r_j R(0.4, 0.7, j, |\mathcal{J}|) \\ b_{jk}^3 &\sim r_j R(0.7, 1, j, |\mathcal{J}|). \end{split}$$

Costs and Budget

For each strategy $k \in \mathcal{K}$ and product $j \in \mathcal{J}$, the per-unit operating costs were generated as

$$c_{jk} \sim \beta(2,2) \ R(0.8, 1.2, j, |\mathcal{J}|) \ R(0.8, 1.2, k, |\mathcal{K}|) \qquad \forall j \in \mathcal{J}, k \in \mathcal{K}$$

and the fixed costs were generated as

$$G_j \sim E_G \ R(0.5, 1, j, |\mathcal{J}|) \ \mathrm{U}(0.8, 1.2) \qquad \forall j \in \mathcal{J}.$$

where $E_G = 0.105 |\mathcal{J}| |\mathcal{K}|$. This procedure ensured that the total fixed costs are of the same order as the total variable costs. The overall budget D was set to $6E_G$.