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abstract

In this dissertation we study several nonconvex and combinatorial optimization problems with
applications in production planning, machine learning, advertising, statistics, and computer vision.
The common theme is the use of algorithmic and modelling techniques from mixed-integer program-
ming (MIP) which include formulation strengthening, decomposition, and linear programming
(LP) rounding.

We first consider MIP formulations for piecewise linear functions (PLFs) that are evaluated when
an indicator variable is turned on. We describe modifications to standard MIP formulations for
PLFs with desirable theoretical properties and superior computational performance in this context.

Next, we consider a production planning problem where the production process creates a mix-
ture of desirable products and undesirable byproducts. In this production process, at any point
in time the fraction of the mixture that is an undesirable byproduct increases monotonically as a
function of the cumulative mixture production up to that time. The mathematical formulation of
this continuous-time problem is nonconvex. We present a discrete time mixed-integer nonlinear pro-
gramming (MINLP) formulation that exploits the increasing nature of the byproduct ratio function.
We demonstrate that this new formulation is more accurate than a previously proposed MINLP
formulation. We describe three different mixed-integer linear programming (MIP) approximation
and relaxation models of this nonconvex MINLP, and derive modifications that strengthen the
LP-relaxations of these models. We provide computational experiments that demonstrate that the
proposed formulation is more accurate than the previous formulation, and that the strengthened
MIP approximation and relaxation models can be used to obtain near-optimal solutions for large
instances of this nonconvex MINLP.

We then study production planning problems in the presence of realistic business rules like taxes,
tariffs, and royalties. We propose two different solution techniques. The first is a MIP formulation
while the second is a search algorithm based on a novel continuous domain formulation. We then
discuss decomposition methods to compute bounds on the optimal solution. Our computational
experiments demonstrate the impact of our formulations, solution techniques, and algorithms on a
sample application problem.

Finally, we study three classes of combinatorial optimization problems: set packing, set covering,
and multiway-cut. Near-optimal solutions of these combinatorial problems can be computed by
rounding the solution of an LP. We show that one can recover solutions of comparable quality by
rounding an approximate LP solution instead of an exact one. These approximate LP solutions
can be computed efficiently by solving a quadratic-penalty formulation of the LP using a parallel
stochastic coordinate descent method. We derive worst-case runtime and solution quality guarantees
of this scheme using novel perturbation and convergence analyses. Our experiments demonstrate
that on these combinatorial problems our rounding scheme is up to an order of magnitude faster



x

than Cplex (a commercial LP solver) while producing solutions of similar quality.
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1 introduction

Optimization is a powerful mathematical language that can be used to aid decision making in
complex systems occurring in various fields such as health care, data analysis, and manufacturing
systems. An optimization model, which we refer to simply as a model throughout this dissertation,
involves a set of mathematical relationships that capture the interactions of a system under study,
and that state the our objectives for the operation of this system. The nature of these relationships
(linear, nonlinear) and the nature of the decisions (discrete, continuous) govern the expressivity
and computational difficulty in solving these models. The process of modeling requires a deep
understanding of the application under consideration, knowledge of the expressive power of each
modeling paradigm, and a familiarity with the computational principles involved in solving a
model.

In this work, we study several problems that can be modelled using a specific modeling paradigm,
known as mixed-integer linear programming (MIP). In a MIP model, the decision options open
to agents are called decision variables that can be continuous variables x ∈ Rp or discrete variables
z ∈ {0, 1}q. The requirements of the system are expressed using constraints while the objective function
is a score that measures the quality of the outcome of the decisions. In a MIP model, the objective
function (aTx+bTz) and constraintsCx+Dz 6 e are expressed using linear functions of the decision
variables x and z. The data required by a MIP model is encoded in the parameters a ∈ Rp, b ∈ Rq,
C ∈ Rn×p, D ∈ Rn×q, and e ∈ Rn whose values are fixed in each instantiation of the model, but
may change if the model is adapted to different data sets and different situations. Commercial MIP
solvers can now solve MIP models with thousands of decision variables. (There are still MIP models
with only hundreds of variables that are solvable in a reasonable amount of time.) A MIP can be
formally written as:

min aTx+ bTz

subject to Cx+Dz 6 e, (1.1)

x ∈ Rp, z ∈ {0, 1}q

Any solution (x, z) to (1.1) that satisfies both domain restrictions x ∈ Rp, z ∈ {0, 1}q and constraints
Cx+Dz 6 e is known as a feasible solution. The set of all feasible solutions is called the feasible region.
The feasible solution(s) that achieves the lowest objective value is known as the optimal solution(s).
Problems without any feasible solutions are called infeasible while those whose optimal objective
can be infinitely negative, while still being feasible, are called unbounded. Note that the model (1.1)
does not contain any nonlinear functions like products of decision variables or absolute value of a
variables. While this might seem restrictive at first glance, one can often express such conditions
using simple linear transformations.
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In this dissertation, we study MIP models with applications in production planning, machine
learning, advertising, statistics, and computer vision. The common theme is the use of algorithmic
and modelling techniques from MIP. In this chapter, we review some basic concepts that are
extensively used throughout this dissertation.

1.1 MIP Formulations

In this section, we review how one can provide an algebraic description of a practical problem
using MIP. Such a description is known as a MIP formulation. We review ideas that help us better
understand why there may be multiple (possibly infinite) MIP formulations for the same problem
and that some of them are inherently better than others. An understanding of the theoretical
properties of MIP formulations helps in formulating MIP models with desirable computational
properties. Consider the following definition of a MIP formulation for a set X ⊆ Rp × {0, 1}q.

Definition 1.1. A subset of Rn described by a finite set of linear constraints P := {x ∈ Rn : Ax 6 b} is
called a polyhedron. (Definition 1.1 of Wolsey [109])

Definition 1.2. Given a set X ⊆ Rp × {0, 1}q, a polyhedron P ⊆ Rp+q is a formulation for the set X iff
X = P ∩ (Rp × {0, 1}q). (Definition 1.2 of Wolsey [109])

From the discussion above, it is easy to see that there may be many valid MIP formulations for
X. In Figure 1.1, we illustrate two different valid formulations for a problem with three feasible
points in the set X (shown using red dots). In fact, one can construct infinitely many valid MIP
formulations with the same feasible region. Based on Definitions 1.1 and 1.2, some natural questions
are: Are some MIP formulations are better than others? Is there a notion of a best or ideal MIP
formulation? To answer these questions, we focus on the linear programming (LP) relaxation of a
MIP formulation (denoted as LP(P)). For the MIP formulation defined in (1.1), the LP-relaxation is
obtained by replacing the restrictions on the variables z ∈ {0, 1}q with z ∈ [0, 1]q:

min aTx+ bTz

subject to Cx+Dz 6 e, (1.2)

x ∈ Rp, z ∈ [0, 1]q

The LP defined in (1.2) can be solved in polynomial time [52] while the formulation (1.1) is NP-hard.
Moreover, (1.2) is a relaxation of (1.1) because its feasible region {x ∈ Rp, z ∈ [0, 1]q : Cx+Dz 6 e}

is a superset of the feasible region of (1.1). Hence the cost of the optimal solution of (1.2) is always
lower (or equal) to that of (1.1).
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Ideal

Non-integral extreme point

Not Ideal

Figure 1.1: Two different formulations of an MIP.

Comparing Formulations. Consider the two MIP formulations (for the same set) illustrated in
Figure 1.1. For us to chose between them, we must consider the LP-relaxation (illustrated using
the pink shaded region). The smaller (or tighter) the LP-relaxation, the better the MIP model. The
following definition formalizes this notion.

Definition 1.3. Given a feasible region X and two valid formulations P1 and P2 for the set X, P1 is better
than P2 if P1 ⊂ P2. (Definition 1.4 of Wolsey [109])

The definition above assumes that the decision variables of P1 and P2 are are in the same domain.
We can easily extend this definition to compare two formulations P ⊆ Rp+q and Q ⊆ Rp+q × Rr of
X ⊆ Rp × {0, 1}q by comparing P with the projection of Q onto the subspace Rp+q, defined as

Projx(Q) := {x ∈ Rp+q : (x,w) ∈ Q for some w ∈ Rr}.

Projx(Q) ⊆ Rp+q is a formulation of the set X in the space of the original variables x ∈ Rp+q. Using
this definition, we assert thatQ is a better formulation of X than P if Projx(Q) ⊂ P. The formulation
Q is called an extended formulation of the set X because it introduces additional variables w ∈ Rr.

Ideal Formulations. We now extend Definition 1.3 to define an ideal or a best formulation of X
as one with the smallest possible LP-relaxation. In such a formulation, the optimal solution of
the LP-relaxation always satisfies integrality constraints on the binary variables. Hence, in an
ideal formulation, solving the LP-relaxation is equivalent to solving the MIP formulation. We can
formalize this idea as:
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Definition 1.4. Given the feasible region X ⊆ Rp+q of (1.2), the convex hull of X is defined as

conv(X) :=
{
y ∈ Rp+q : y =

t∑
i=1

λiy
i,

t∑
i=1

λi = 1, λi > 0 ∀i = 1, . . . t

over all finite subsets {y1,y2, . . .yt} of X
}

.

(Definition 1.3 of Wolsey [109])

Hence, the best one can do is to formulate conv(X). If not, we must try to formulate problems using
MIPs that are as close as possible to conv(X).

Locally Ideal & Sharp Formulations.

We can study the polyhedral properties of a subset of a MIP formulation and still learn something
about the entire formulation. Padberg and Rijal [74] address this issue by defining a locally ideal MIP
formulation as one, which in the absence of other constraints, satisfies the property that all extreme
points of its corresponding LP-relaxation satisfy integrality conditions. The term ’ideal’ refers to the
property that this is the best that any MIP formulation can do from any perspective while the term
’local’ highlights that it only applies to a selected portion and not the entire MIP formulation. A
locally ideal formulation is a minimal and complete linear description of the polytope corresponding
to every extreme point of the convex hull of the MIP formulation [74].

Jeroslow and Lowe [50] define another desirable property of MIP formulations called sharpness
which is slightly weaker than local idealalness. Consider an extended MIP formulationQ ⊆ Rp+q+r

for a set X ⊆ Rp × {0, 1}q whose optimal integral solution is

z∗ = {min cTx+ dTw subject to (x,w) ∈ Q ∩ (Rp × {0, 1}q × Rr)}.

The optimal solution of the LP-relaxation of Q is given by

zLP = {min cTx+ dTw subject to (x,w) ∈ Q}.

The value zLP is known as the LP-relaxation bound. Jeroslow and Lowe [50] define a formulation
as sharp if it achieves the best possible value of the LP-relaxation bound amongst all formulations
that model the set X. An extended MIP formulation Q ⊆ Rp+q × Rr of the set X is sharp when the
set of extreme points of Projx(Q) and conv(X) are exactly the same. Based on this description, it
is easy to see that every locally ideal formulation is sharp because a locally ideal formulation is
exactly conv(X). The key difference between sharp formulations and locally ideal formulations is
that sharp formulations are strongest possible with respect to the LP-relaxation bounds but offer no
guarantees on integrality of the optimal solution of the LP-relaxation. Locally ideal formulations
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are ideal with respect to the bounds from the LP-relaxation bound as well as integer feasibility. It is
important to study the polyhedral properties of MIP formulations because desirable formulation
attributes (like locally ideal) can significantly impact performance when solved using state of the art
solvers. Even though state of the art solvers use complex algorithms and heuristics that make it hard
to predict exactly which formulation performs better, it is almost always the case that formulations
with stronger (or smaller) LP-relaxations will perform better.

Example: Piecewise-Linear Functions.

We present an example of a problem with multiple MIP formulations. We review some known
results about the strength of these MIP formulations and discuss their consequences in practical
applications. We consider MIP formulations for piecewise-linear functions (PLFs); a structure that
occurs frequently in this dissertation.

Consider a continuous univariate PLF f : [B0,Bn]→ R with its domain [B0,Bn] divided into an
increasing sequence of breakpoints {B0,B1, . . . ,Bn}. The function f(·) can be written as

f(x) :=



m1x+ c1, x ∈ [B0,B1]

m2x+ c2, x ∈ [B1,B2]

...

mnx+ cn, x ∈ [Bn−1,Bn]

(1.3)

where mi ∈ R, ci ∈ R. There are several known MIP formulations [10, 64, 50, 27, 67, 105] for the set

PL = {(x,y) ∈ R2 : y = f(x)}.

Of these, we consider two formulations, one of which is provably stronger than the other.

Convex Combination Model. The first formulation for PL is called the convex combination model [27]
(also known as the lambda method). The convex combination model introduces continuous variables
λ ∈ Rn+1

+ and binary variables b ∈ {0, 1}n. The function argument x and function value y are
expressed as a convex combination of the variables λ ∈ Rn+1

+ using:

y =

n∑
i=0

λiFi, x =

n∑
i=0

λiBi, 1 =

n∑
i=0

λi (1.4)
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where Fi := f(Bi) = miBi + ci, ∀i ∈ {1 . . .n}. The binary variables b are used to enforce the
following adjacency condition:

b1 = 0⇒ λ0 = 0,(
bi = 1⇒ λj = 0, ∀j /∈ {i, i− 1}

)
∀i ∈ {1 . . .n− 1} (1.5)

bn = 0⇒ λn = 0.

Finally, we enforce
∑n
i=0 bi = 1 to make sure that exactly one binary variable from b is set to 1.

Constraints (1.4) and (1.5) ensure that we select exactly one piece of f(·). Once that piece is chosen,
we express x and y as a linear combination of two end points of the chosen piece. For example, let
us assume that kth piece of f(·) is selected. Setting bk = 1 ensures that λi = 0 ∀i /∈ {k,k− 1} which
implies that the function value y (and argument x) is a linear combination of Fk and Fk−1 (Bk and
Bk−1 resp.). The convex combination model for the set PL is given by:

CC :=
{
(x,y,λ,b) ∈ R× R× Rn+1

+ × {0, 1}n :

x =

n∑
i=0

λiBi, y =

n∑
i=0

λiFi,
n∑
i=0

λi = 1,
n∑
i=1

bi = 1,

λ0 6 b1, λn 6 bn, λi 6 bi + bi+1 ∀i ∈ {1 . . .n− 1}
}

.

Multiple Choice Model. The multiple choice model was first introduced by Jeroslow and Lowe
[50] and analyzed by Balakrishnan and Graves [3]. In this model, we introduce continuous variables
w := {w1, . . .wn} and binary variables b := {b1, . . .bn} to enforce the logical implication thatwi = x
if x is in the ith interval and wi = 0 otherwise. This condition can be expressed algebraically using:

n∑
i=1

wi = x,

Bi−1bi 6 wi 6 Bibi ∀i ∈ {1 . . .n}

Again, we require
∑n
i=0 bi = 1 to ensure that exactly one piece is chosen. The function value y can

be expressed in terms of the variablesw and b using:

y =

n∑
i=1

(miwi + cibi).
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It is easy to see that when bi = 1 the multiple choice model enforces y = mix+ ci. The multiple
choice model for PL is given by:

MCM :=
{
(x,y,w,b) ∈ R× R× Rn × {0, 1}n :

n∑
i=1

wi = x, y =

n∑
i=1

(miwi + cibi), Bi−1bi 6 wi 6 Bibi ∀i ∈ {1 . . .n}
}

.

Comparing CC and MCM. Balakrishnan and Graves [3] show that MCM is locally ideal while Pad-
berg [73] and Lee and Wilson [56] show that CC is not locally ideal. Vielma et al. [102] show that
CC is sharp. They also conducted a computational study comparing several MIP formulations of
univariate PLFs and conclude that Cplex, a commercial IP solver, can solve MCM up to 10x faster
than CC.

1.2 Solving MIPs Exactly: Branch and Bound

In this section, we describe the branch and bound algorithm, a popular algorithm for finding optimal
solutions of discrete optimization problems. In branch-and-bound, we systematically enumerate all
candidate solutions and discard large subsets of feasible solutions using upper and lower bound
estimates. This algorithm has been successfully implemented in many commercial MIP solvers.
Refer to Wolsey [109] for details on the theoretical as well as computational aspects of this algorithm.

Consider the following optimization problem:

z∗ = min{cTx : x ∈ X} (1.6)

In branch-and-bound, the set X is decomposed into subsets X1,X2 . . .XK such that X =
⋃K
i=1 Xi.

These subsets are then used to solve smaller subproblems whose solutions

zi = min{f(x) : x ∈ Xi} i = 1 . . .K

can be aggregated to find the optimal solution of (1.6) using z∗ = mini zi. As the name suggests,
a generic branch-and-bound algorithm consists of branch and bound steps. In the branch step, we
recursively decompose X into a collection of subsets (called nodes) that define a tree structure
(called the search tree). For the MIP formulation (1.1), the nodes are of the form S := {x ∈ Rp, z ∈
{0, 1}q : Cx+Dz 6 e, Fz 6 f} where Fz 6 f are a set of additional linear constraints specified on the
binary variables that are commonly derived from the optimal solution of the LP-relaxation (1.2).
For example, let (x∗, z∗) denote an optimal solution of the LP-relaxation of a node S (denoted as
LP(S)). Let z∗i = δ denote an optimal value of the decision variable zi. A valid decomposition, in
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the branch step, would be to divide S into the subsets S1 := {(x, z) ∈ S : zi 6 bδc} and S2 := {(x, z) ∈
S : zi > bδc+ 1}.

In the bound step, we first select a node S ⊆ X created in the branch step. Depth-first search and
best bound search are examples of commonly use node selection strategies. In the depth-first search
strategy, we select one of the most recently created nodes. In the breath first strategy, we select an
unexplored node with the least lower bound. Commercial solvers implement a combination of both
strategies, depending on the problem in consideration. Once a node S is selected, we compute upper
and lower bounds for the problem P(S) := min{aTx + bTz : (x, z) ∈ S}. For MIP formulations, an
optimal solution of P̂(S) := min{aTx+ bTz : (x, z) ∈ LP(S)} is a valid lower bound for P(S). Upper
bounds for P(S) are determined from feasible solutions using heuristics, or from P̂(S) if the extreme
points satisfy the integrality conditions. If the lower bound obtained from P̂(S) is higher than the
best found feasible solution so far, then the node S need not be explored again in subsequent branch
phases. From this discussion, the importance of the LP-relaxation of (1.1) is apparent. The stronger
the LP-relaxation, the better are the lower bounds computed from P̂(S) which then allows more
nodes to be pruned from the search tree and consequently fewer subproblems need to be explored.

1.3 Solving MIPs Approximately

Given a sufficient amount of time, the branch-and-bound algorithm can find an optimal solution of
a MIP. Unfortunately, we may need to explore several million nodes before finding even one feasible
solution of the MIP. In fields like machine learning, computer vision, advertising, and statistics, it is
quite common to encounter MIP formulations with millions of binary decision variables. In these
situations, we can trade solution quality for computational complexity by replacing an exact but
expensive algorithm (like branch-and-bound) with an approximate but computationally inexpensive
algorithm. There has been a lot of successful research on finding approximate solutions for MIP
problems using heuristic algorithms. These algorithms can yield good results in practice but do not
offer any theoretical bounds on runtime and solution quality. The field of approximation algorithms
provides a theoretical framework to design and analyze polynomial time algorithms that can find
provably approximate solutions of NP-hard problems.

There are many known approximation algorithms for combinatorial-optimization problems; a
special class of MIP problems defined over sets, graphs and matroids. These algorithms are either
combinatorial or LP-based. The combinatorial algorithms include greedy algorithms, randomized
algorithms, and reduction to problems with known polytime algorithms. LP-based algorithms
broadly fall into two categories; LP-rounding and primal dual algorithms. In LP rounding, we
convert an optimal solution of the LP-relaxation to a feasible integral solution of the MIP formulation
and in the process, ensure that the total cost of the objective function does not increase too much.
Primal-dual algorithms exploit LP-duality by constructing integral solutions to the primal problem
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and feasible solutions to the dual problem iteratively. The dual feasible solutions are lower bounds
on the objective function of the integer program and primal integral solution are upper bounds.
Approximation guarantees are established by comparing costs of the dual feasible solution and the
primal integral solution. Both LP-based approaches are extensively used to design approximation
algorithms for many practical problems. Vazirani [101] provides a comprehensive survey of LP-
rounding and primal-dual schemas.

1.4 Lagrangian Relaxation

Lagrangian (sometimes spelled as Lagrangean) relaxation is a popular relaxation technique to
compute bounds on the optimal solution of a MIP. We review some basic concepts of the Lagrangian
relaxation technique for MIPs. The discussion here is based on the survey paper by Fisher [32] and
the textbook by Wolsey [109].

Consider the following MIP formulation

z∗ = min cTx subject to

Ax 6 b, (1.7)

Cx 6 d,

x ∈ {0, 1}n.

where A ∈ Rp×n and C ∈ Rm×n. The constraints Ax 6 b are simple in the sense that

zR = min cTx subject to Ax 6 b, x ∈ {0, 1}n (1.8)

can be solved relatively easily. However, the presence of the constraints Cx 6 d makes the problem
computationally challenging. Since the feasible region of (1.7) is a subset of the feasible region
of (1.8), the optimal objective of (1.8) is a bound on the optimal objective of (1.7). However, the
relaxation in (1.8) can be very weak. Fortunately, we can do much better than (1.8). Given a set of
nonnegative parameters λ ∈ Rm+ , consider the following optimization problem

z(λ) = min cTx− λT (d− Cx) subject to Ax 6 b, x ∈ {0, 1}n, (1.9)

whose optimal solution z(λ) is a function of the parameter λ (known as the Lagrangian multiplier
associated with the constraints Cx 6 d). For any λ > 0, it is easy to see that z(λ) 6 z∗. In (1.9),
the complicating constraints Cx 6 d are handled in the objective as a simple linear penalty term. In
order to find the best (largest) possible lower bound z(λ) for z∗, we solve the following optimization
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problem (known as the Lagrangian dual problem)

w∗ = max
λ>0

z(λ). (1.10)

Let us now try and understand how z∗ compares with the best bound w∗ attainable by solving the
Lagrangian dual. For simplicity, consider a set X = {x ∈ {0, 1}n : Ax 6 b} which consists of a finite
number of feasible points {x1 . . . xt}. In this setting, we can rewrite (1.10) as

w∗ = max
λ,η

η subject to

η 6 cTxi − λ(d− Cxi) i ∈ {1 . . . t} (1.11)

η ∈ R, λ ∈ Rm+ .

The optimization problem defined in (1.11) is an LP whose dual can be written as

w∗ = min
µ

t∑
i=1

µi(c
Txi) subject to

t∑
i=1

µi(Cxi − d) 6 0,
t∑
i=1

µi = 1, µ ∈ Rt+, (1.12)

which can be rewritten as

w∗ = min cTx subject to Cx 6 d, x ∈ conv(X). (1.13)

It can be shown that (1.13) holds for the feasible region X = {x ∈ [0, 1]n : Ax 6 b} of any integer
program.

Theorem 1.5. w∗ = min{cTx : Cx 6 d, x ∈ conv(X)} (Theorem 10.3 of Wolsey [109]).

The expression (1.13) suggests that in the worst case, if conv(X) = {x ∈ [0, 1]n : Ax 6 b} then the
Lagrangian dual is no better than solving the LP-relaxation of (1.7). In addition to the strength of
the Lagrangian dual, (1.7) reveals that the structure of the function z(λ) is piecewise linear concave.
The classical subgradient algorithm due to Polyak [78] for minimizing non-smooth convex functions
is one of the most widely used methods to solve the Lagrangain dual problem in (1.10). In Chapter
4, we use Lagrangian relaxation to decompose a single MIP formulation into many smaller MIP
formulations that are easier to solve.
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1.5 Overview

We provide an overview of the MIP formulations considered in this work. In Chapter 2, we consider
MIP formulations for PLFs. There are several well known MIP formulations for modeling PLFs
including the specially ordered sets of type II (SOS2) model [10], the incremental model, or delta
method (Delta) [64], the multiple choice model (MCM) [50], the convex combination model (CC) [27],
and the disaggregated convex combination model (DCC) [67, 105]. The structure of interest, in
Chapter 2, is the modelling of PLFs where setting a binary indicator variable to zero forces the
argument of the function to zero which in turn forces the function value to be zero. Models with this
structure are used in a wide range of applications like gas network optimization [65], transmissions
expansion planning [1], sales resources allocation [60], and thermal unit commitment [21]. We
describe modifications to standard MIP formulations for PLFs with desirable theoretical properties
and superior computational performance in this context.

In Chapter 3, we study a production planning problem, where the production process creates a
mixture of useful products and undesirable byproducts. As more of the mixture is produced, the
fraction of the mixture that is a useful product decreases monotonically. Conversely, the fraction of
each byproduct increases monotonically as a function of cumulative mixture production. Production
planning problems with these characteristics arise in engineering applications like the extraction of
natural resources such as oil and gas [49, 93, 96, 97] from fields, hydro turbine performance mod-
elling [15, 72], chemical process design [66], and compressor scheduling in petroleum reservoirs [19].
Optimizing production for problems that contain this structure is complicated because the amount
of each product produced is a nonconvex function of the cumulative mixture production up to that
time. The problem can be formulated using a nonconvex mixed-integer nonlinear programming
(MINLP) model that is hard to solve directly even with state-of-the-art software packages such as
Baron [94] or Couenne [12]. Our approach is to develop accurate and computationally useful MIP
formulations for this model. A time-discretization of this production planning problem is required
to obtain a model that is suitable for implementation and numerical evaluation. Tarhan et al. [93]
introduce one such discrete-time MINLP formulation. The main contribution of Chapter 3 is an
alternative discrete-time MINLP formulation that is both more accurate and more computationally
tractable than the one by Tarhan et al. [93]. We derive three different MIP models that approximate
or relax the convex/concave functions. We also demonstrate two techniques for improving the LP-
relaxations of the proposed MILP formulations. The first is based on the ideas discussed in Chapter
2 while the second exploits the fact that the cumulative total production, which is the argument to
the nonlinear functions being approximated, is increasing over time. An important substructure
found in this production model is the use of multiple nonlinear functions that share the same
domain. We propose nonlinear programming (NLP) formulations for determining the best possible
piecewise-linear approximations and relaxations of multiple univariate convex/concave functions,
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with the requirement that the piecewise-linear functions share the same set of break points. We
conclude with computational experiments that demonstrate that the proposed formulation is more
accurate than the previous formulation [93], and that the strengthened MIP approximation and
relaxation models can be used to obtain provably near-optimal solutions for large instances of this
nonconvex MINLP. Experiments also illustrate the quality of the piecewise-linear approximations
produced by our nonlinear programming formulations.

In strategic planning problems, like the ones discussed in Chapter 3, the modelling of realistic
business rules like taxes, tariffs, contracts and royalties can greatly impact decision making. In
Chapter 4, we develop optimization models, solution techniques, and algorithms for production
planning problems in the presence of a type of fiscal contract called production sharing contracts
(PSC) in which the tax incurred by a contractor is a piecewise-constant function of the internal
rate-of- return (IRR). An important aspect of PSCs that we address is the presence of administrative
blocks. These administrative blocks, called markets or ring fences, are entities in the project whose fiscal
calculations are grouped together so that they are completely independent of each other. Problems
with this structure arise in applications such as hydrocarbon field infrastructure planning [49, 98,
44, 58, 22], portfolio optimization [77] and production planning [2, 86, 91]. The challenge while
modelling IRR-based PSCs is that the objective function is a nonconvex, discontinuous function of
the decision variables. We propose two different solution techniques. The first is a MIP formulation
that eliminates the inherent nonlinearity present in IRR-based PSCs. However, this MIP formulation
has a weak LP-relaxation because it requires variable bounds that are difficult to estimate. The
second solution technique is a search algorithm based on a novel continuous domain formulation.
Motivated by the observation that our MIP formulation can be effectively used to solve problems
involving a single market, we propose a market-based decomposition scheme to compute bounds on
the optimal solution. We conclude this chapter with computational experiments that demonstrate
the impact of our formulations, solution techniques and decomposition algorithms on a sample
application problem.

In Chapter 5, we study the use of LP-rounding in approximating solutions for NP-hard com-
binatorial optimization problems such as set cover, set packing, and multiway-cut. LP-rounding
based approximation schemes have been successfully used for a wide range of NP-hard problems
in applications like machine learning [85, 112, 57, 84], computer vision [53, 16, 24], natural language
processing [14, 54] and statistics [7, 99]. In this Chapter, we first show that one can recover solutions
of comparable quality by rounding an approximate LP solution instead of the exact one. Our intuition
is that in LP-rounding, since we ultimately round the LP to obtain an approximate solution of the
combinatorial problem, a crude solution of the LP may suffice. Hence, an approach that can find
approximate solutions of large LPs quickly may be suitable, even if it is inefficient for obtaining
highly accurate solutions. We then build a solver, called Thetis, that can compute approximate
LP solutions efficiently by applying an asynchronous parallel stochastic-coordinate descent (SCD)
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method to a quadratic-penalty formulation of the LP. The SCD algorithm [69, 95, 11, 111] is suitable
for solving large-scale optimization problems because each iteration of the algorithm modifies a
single coordinate and requires only the direction of the gradient along that coordinate. Recent work
on asynchronous parallel versions of SCD [70, 59] make the entire LP-rounding scheme suitable
for execution on multi core, shared-memory architectures. We derive worst-case runtime and
solution quality guarantees for our solver using novel perturbation and convergence analysis. Our
experiments demonstrate that on such combinatorial problems as vertex cover, independent set and
multiway-cut, our approximate rounding scheme is up to an order of magnitude faster than Cplex
(a commercial LP solver) while producing solutions of similar quality.
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2 locally ideal formulations for piecewise linear functions with indicator
variables

In this chapter, we consider MIP formulations for piecewise linear functions (PLFs) that are evaluated
when an indicator variable is turned on. We describe modifications to standard MIP formulations
for PLFs with desirable theoretical properties and superior computational performance in this
context. The results in this chapter appear in Sridhar et al. [90].

2.1 Introduction

Optimization problems involving PLFs appear in a wide range of applications. PLFs are frequently
used to approximate nonlinear functions and to model cost functions involving economies of
scale and fixed charges. Problems involving nonconvex PLFs are commonly formulated as MIP
problems [10, 64, 27, 3, 102]. Consider a univariate PLF f : [B0,Bn] → R with its domain [B0,Bn]
divided into an increasing sequence of breakpoints {B0,B1, . . . ,Bn}. For simplicity, we assume that
f(·) is continuous, B0 = 0 and f(0) = 0. Our results can be extended to the case when f(·) is lower
semi-continuous, B0 6= 0, and f(B0) 6= 0. The function f(·) can be written using

f(x) := mix+ ci, x ∈ [Bi−1,Bi] ∀i ∈ {1 . . .n} (2.1)

where mi ∈ R, ci ∈ R and B0 < B1 < · · · < Bn. Methods for modeling PLFs include specially
ordered sets of type II (SOS2) [10], the incremental model, or delta method (Delta) [64], the multiple
choice model (MCM) [50], the convex combination (CC) model [27], the disaggregated convex
combination model (DCC) [67], and approaches that require only logarithmically many binary
variables [105].

In this chapter, we present MIP formulations for PLFs where setting a binary indicator variable
to zero forces the argument of the function of f(·) to zero which in turn forces the function to take a
zero value. In other words,

z = 0⇒ x = 0, f(x) = 0. (2.2)

The goal of this work is to present a theoretical and computational comparison of MIP formula-
tions that enforce the logical conditions in (2.2). Specifically, we examine properties of different
formulations of the three variable set

X :=

n⋃
i=1

{
(x,y, z) : x ∈ [Bi−1,Bi], y = mix+ ci, z = 1

}⋃{
(0, 0, 0)

}
. (2.3)

In some applications, notably those where the PLF appears in a minimization objective, the relevant
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set to study has the variable y constrained to lie in the epigraph of a convex function. We denote

X> :=

n⋃
i=1

{
(x,y, z) : x ∈ [Bi−1,Bi], y > mix+ ci, z = 1

}⋃{
(0, 0, 0)

}
.

as the set where the equality relationship in (2.3) is replaced with y > mix + ci. The results we
derive will apply equally well to the case where the y is forced to lie exactly on f(·) i.e y = mix+ ci

when x ∈ [Bi−1,Bi].

Background

MIP formulations for piecewise linear functions with indicator variables arise in various applications
including gas network optimization [65], production planning [93, 91], transmissions expansion
planning [1], oil field infrastructure development [49, 42], sales and advertising budget allocation [88,
60, 115], unit commitment problems [15, 33, 21] as well as in substructures used by general purpose
MINLP algorithms [26]. We explain using three specific models where the structure in (2.2) has
been modeled.

Gas Network Optimization. In the field of gas network optimization, Martin et al. [65] proposed
MIP formulations to help design cost effective gas networks that satisfy consumers with demands
for gas at a certain pressure. The gas network is modeled as a directed graphG = (V ,E) where edges
E are valves/compressors that regulate pressure and the nodes V are either sources/consumers of
gas. The compressors help maintain gas pressure but consume a fraction of the gas flowing through
the network. PLFs are used to approximate the fuel-gas consumption of a compressor e ∈ E between
nodes (u, v) given by

f(pu,pv,qe) = γ
((pu

pv

)κ−1
κ

− 1
)
qe

where qe ∈ R+ is the gas volume flow in each edge e ∈ E, pv ∈ R+ is the pressure of gas at each
node v ∈ V and κ,γ are constants. Binary variables se determine if a compressor in each edge e ∈ E
is switched on. If the compressor in a segment is turned off (se = 0), then the gas volume flow qe,
and the fuel-gas consumption f(pu,pv,qe) are both zero.

Sales Resource Allocation. In another application related to sales/advertising, several authors [88,
60, 115] have formulated sales resource allocation problems using MIPs. The goal is to maximize
a nonconvex return on investment (ROI) function while satisfying budget constraints. In these
models, a company is required to allocate a budget B among several sales entities each with several
choices of implementation strategies. The company incurs a fixed cost for using each sales entity
and an operational cost depending on the implementation strategy chosen. Figure 2.1 illustrates a
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commonly used nonconvex PLF (called S-curves) used to model the ROI from different sales entities.
Again, we observe the structure that a binary variable (choosing a sales entity) determines whether
or not a PLF (contribution to the ROI) must be evaluated.

Global Optimization of MINLPs. In a third application, D’Ambrosio et al. [26] proposed a global
optimization algorithm for mixed integer nonlinear programs with separable nonconvexity. As a
substructure in their algorithm, the authors explicitly model each univariate nonconvex function g :

R→ R as a piecewise convex/concave function which are defined using ordered set of breakpoints
P0 < P1 . . . < Pp̄ representing the points where the convexity/concavity of g(·) changes. For each
interval p ∈ {1, . . . p̄} the convex/concave piece gp : R → R is modeled using PLF with a binary
variable zp to determine if the piece contributes to the original function g(·). This substructure is
another example of the use of the setXwhile modeling applications involving PLFs who’s evaluation
depends on the state of a binary variable.

Table 2.1: Applications Using PLFs with Indicator Variables.

PLF Model Used Application Reference
SOS2 Gas network optimization [65]
Delta Transmissions expansion planning [1]
Delta Thermal unit commitment [21]
CC Oil field development [42]
CC Hydro Scheduling [15]

MCM Sales resource allocation [60]

PLFs with indicator variables arise in many other settings. Table 2.1 lists several applications in the
literature that have modeled PLFs using standard MIP formulations for PLFs in conjunction with
variable upper bound constraints of the form

x 6 Bnz (2.4)

to enforce the logical on-off condition (2.2).

Main Results

In this work, we propose a simple modeling artifice for PLFs that also enforces the logical condi-
tion (2.2), and we demonstrate its desirable theoretical and computational properties. We start by
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describing the idea using SOS2 to model a PLF as

x =

n∑
i=0

λiBi, (2.5)

y =

n∑
i=0

λiFi, (2.6)

1 =

n∑
i=0

λi, (2.7)

λ :=
{
λi ∈ R+ : ∀i ∈ {0 . . .n}

}
is SOS2.

where Fi := f(Bi) = miBi + ci ∀i ∈ {0 . . .n}. In this formulation, the function f(·) and its argument
x are expressed as convex combinations of breakpoints B := {B0 . . .Bn} and their corresponding
function evaluations {F0 . . . Fn} respectively. The formulation introduces a non-negative set of
variables λ ∈ Rn+1 that satisfy the SOS2 property—at most two of the variables can be positive, and
if two variables are positive then they must be consecutive in the ordered set. Most modern general
purpose MIP solvers enforce the SOS2 condition algorithmically by branching [10].

Using variable upper bound constraints (2.4) to enforce the logical condition (2.2) has two
problems. First, the use of “bigM” constraints may considerably weaken the LP relaxation of the
MIP formulation. Second, the model introduces an additional constraint x 6 Bnz. We propose the
following simple strengthening that replaces x 6 Bnz and

∑n
i=0 λi = 1 with

n∑
i=0

λi = z. (2.8)

Setting the binary variable z = 0 in (2.8) forces λi = 0 ∀i ∈ {0 . . .n}, which in turn forces forces the
function to take a zero value. If the binary variable z = 1, then

∑n
i=0 λi = 1, which reduces to (2.7).

We show in Section 2.2 that a formulation using (2.8) has the desirable property of being locally ideal,
while one that uses x 6 Bnz does not. Borghetti et al. [15] created a formulation of X that employed
the strengthening techniques we describe. They used the convex combination method to model the
PLFs which does not have the locally ideal property [102].

Contributions

In this work, we focus on MIP formulations for PLFs with indicator variables; a general class of
problems that occur in various applications. We highlight four important contributions of this work.

First, we present tight formulations for X by extending existing MIP formulations for PLFs using
the SOS2 model. Our formulations have theoretical grounding in addition to superior computational
performance in comparison with standard textbook models.
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As a second contribution, we study many theoretical properties relating to the quality and
tightness of our MIP formulations and compare them with previous work. We show SOS2 models
for PLFs that use (2.8) are locally ideal. Desirable local properties imply that our formulations, in the
absence of other constraints, model the set X perfectly. We also show that formulations that use the
SOS2 model in conjunction with constraints (2.4) are not locally ideal. Finally, we show that for the
special case of convex PLFs, our formulations are equivalent to the perspective reformulation of
convex sets [23]. Hence our model achieves the same strength as the perspective reformulation for
convex PLFs. Such a theoretical understanding of the quality and tightness of MIP formulations
plays an important role when the resulting problems are solved using general purpose MIP solvers.

As a third contribution, we apply the same formulation strengthening to several MIP formulations
of PLFs including the incremental model, the multiple choice model [3], the disaggregated convex
combination model [102, 105], and several logarithmic models [102]. Therefore, this formulation
strengthening technique could be directly applied to all of the applications listed in Table 2.1. In
all cases, we show that our model retains the desirable theoretical property of the underlying PLF
modeling method, either idealness or sharpness, but using a variable upper bound constraint in
(2.4) destroys the property.

Finally, we conduct a computational study to illustrate the benefits of the new formulations. In
our experiments, we observed that our formulation compute optimal solutions on average 40x faster,
explore 15x fewer nodes and produce LP relaxations that are 20% closer to the optimal solution.

The rest of this chapter is organized as follows. In Section 2.2, we study the theoretical properties
of SOS2 models for X. In Section 2.2, we illustrate how our formulation strengthening can be applied
to various other models of PLFs. We conclude, in Section 2.3 with numerical experiments that
illustrate the impact of our formulation strengthening.

2.2 Properties of MIP formulations

Padberg and Rijal [74] define a locally ideal MIP formulation as one where the vertices of its corre-
sponding LP relaxation satisfy all required integrality conditions. Extending this definition, Croxton
et al. [25] and Keha et al. [51] define a locally ideal SOS2 formulation as one whose LP relaxation has
extreme points that all satisfying the SOS2 property. As shown by Vielma et al. [102], all commonly
used MIP formulations of PLFs, except for the original convex combination (CC) model, are known
to be locally ideal. In this section, we demonstrate the same theoretical strength of our proposed
formulations for X that include the logical condition (2.2).
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SOS2 Model

We consider the following two SOS2-based formulations for X:

S1 :=
{
(x,y,λ, z) ∈ R× R× Rn+1

+ × {0, 1} : x =
n∑
i=0

Biλi, y =

n∑
i=0

Fiλi,

1 =

n∑
i=0

λi, x 6 Bnz, λ is SOS2
}

S2 :=
{
(x,y,λ, z) ∈ R× R× Rn+1

+ × {0, 1} : x =
n∑
i=0

Biλi, y =

n∑
i=0

Fiλi,

z =

n∑
i=0

λi, λ is SOS2
}

where S1 is a standard SOS2 model for PLFs that uses the constraint (2.4), while formulation S2 uses
the constraint (2.8) to model the logical condition (2.2). One can easily show that both S1 and S2 are
valid formulations of X. In other words, for either T = S1 or T = S2,

X =
{
(x,y, z) : ∃λ ∈ [0, 1]n+1 s.t (x,y, z,λ) ∈ T

}
.

We use the standard definition of the LP-relaxation of a model as the relaxation obtained by replacing
integrality restrictions on variables with simple bound restrictions and by removing adjacency
requirements for SOS2 variables. We now prove that the formulation S2 is locally ideal while S1 is
not.

Theorem 2.1. Formulation S2 is locally ideal.

Proof. The LP relaxation of S2 has n+ 4 variables, three equality constraints

x =

n∑
i=0

Biλi, y =

n∑
i=0

Fiλi, z =
n∑
i=0

λi,

and n+ 2 inequality constraints, z 6 1 and λi > 0 ∀i ∈ {0 . . .n}. Extreme points of the LP relaxation
of S2 have n+ 4 binding constraints, which forces at least n variables from λ ∈ Rn+1

+ to be exactly
equal to zero. Thus, the extreme points of the LP relaxation of S2 are

{(x = Bi, y = Fi, λ = Bi~ei, z = 1) ∀i ∈ {1 . . .n}}
⋃

(x = 0,y = 0,λ = ~0, z = 0) (2.9)

where ~ei are the n dimensional unit vectors. All points in (2.9) have z ∈ {0, 1} and satisfy the SOS2
properties for the λ variables. Hence, S2 is locally ideal.
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A point (x,y,λ, z) can only be an extreme point of the set

P>2 :=
{
(x,y,λ, z) ∈ R× R× Rn+1

+ × [0, 1] : x =
n∑
i=0

Biλi, y >
n∑
i=0

Fiλi, z =
n∑
i=0

λi

}
if y =

∑n
i=0 Fiλi. Therefore, the proof of Theorem 2.1 also establishes that expressing logical

condition (2.2) using (2.8) also results in a locally ideal formulation of X>. Similar logic applies in
our subsequent proofs of the local idealness of other formulations of X (Theorems 2.4 and 2.6). In
each case, our proposed modeling of the logical condition (2.2) also yields a locally ideal formulation
of X>.

Theorem 2.2. Formulation S1 is not locally ideal.

Proof. Consider an instance with n = 3, B = {0, 1
3 , 2

3 , 1}, and F = {0, 4, 2, 3}. The point {x = 1
3 ,y =

4,λ = (0, 1, 0, 0), z = 1
3 } is feasible to the LP relaxation of S1 but not feasible for the LP relaxation of

S2. The point {x = 1
3 ,y = 4,λ = (0, 1, 0, 0), z = 1

3 } is an extreme point of the LP relaxation of S1 since
it satisfies the n+ 4 = 7 equations:

λ0 = 0, λ2 = 0, λ3 = 0, x = B3z, x =
3∑
i=0

λiBi, y =

3∑
i=0

Fiλi, and
3∑
i=0

λi = 1.

The value of the binary variable z = 1/3 is not integral in this extreme point.

An interesting consequence of Theorem 2.1 is that when the PLF is convex, the application of the
reformulation technique we suggest to the set X> is equivalent to the perspective reformulation [41], a
preprocessing technique for (convex) mixed integer nonlinear programs that have the logical indica-
tor structure (2.2). If f(·) is convex, then m1 > m2 > . . . > mn, and the perspective reformulation of
X> is

P = {(x,y, z) ∈ R2 × [0, 1] : y > mix+ ciz ∀i ∈ {1 . . .n}, 0 6 x 6 Bnz},

where mi := (Fi − Fi−1)/(Bi − Bi−1) and ci := (Fi−1 − Bi−1(Fi − Fi−1)/(Bi − Bi−1)). Günlük and
Linderoth [41] show that if f(·) is convex, then P = conv(X>). The formulation S2 is locally ideal,
so P>2 must also be a formulation that is similarly strong.

Corollary 2.3. Projxyz(P
>
2 ) = P = conv(X>).

Incremental Model

The incremental method (sometimes referred to as the Delta method) was first introduced by Markowitz
and Manne [64]. Several articles [27, 73, 51] have studied the polyhedral properties of the incremen-
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tal model. The incremental model introduces a set of non-negative variables δ := {δ1, . . . , δn} to
model the portion of each interval “filled” by the variable x. The interval i+1 can be filled (δi+1 > 0)
only if the interval i is already filled (δi = 1). Unlike the SOS2 model, the incremental model
specifically requires the introduction of binary variables b ∈ {0, 1}n−1 to enforce the necessary
ordering conditions. To model the on-off logical condition (2.2), the incremental model can be
augmented with a variable upper bound constraint x 6 Bnz, resulting in a formulation

∆1 :=
{
(x,y,δ, z,b) ∈ R× R× Rn × [0, 1]× [0, 1]n−1 :

x =

n∑
i=1

[Bi − Bi−1]δi, y =

n∑
i=1

[Fi − Fi−1]δi, x 6 Bnz,

δ1 6 1, 0 6 δn, δi+1 6 bi 6 δi ∀i ∈ {1 . . .n− 1}
}

.

Alternatively, the on-off condition can be enforced by replacing the constraint δ1 6 1 with δ1 6 z,
yielding the formulation

∆2 :=
{
(x,y,δ, z,b) ∈ R× R× Rn × [0, 1]× [0, 1]n−1 :

x =

n∑
i=1

[Bi − Bi−1]δi, y =

n∑
i=1

[Fi − Fi−1]δi,

δ1 6 z, 0 6 δn, δi+1 6 bi 6 δi ∀i ∈ {1 . . .n− 1}
}

.

Incremental models that use δ1 6 z are locally ideal, while those that use x 6 Bnz are not.

Theorem 2.4. Formulation ∆2 is locally ideal.

Proof. We prove that D2 is locally ideal i.e the extreme points of the LP relaxation of D2 := LP(∆2)

satisfies the integrality for variables z and b. The setD2 is defined using 2n+2 variables with 2n+2
inequality constraints given by

a1 := 1 − z > 0,

a2 := z− δ1 > 0,

a2+i := δi − bi > 0 ∀i ∈ {1 . . .n}, (2.10)

an+1+i := bi − δi+1 > 0 ∀i ∈ {1 . . .n},

a2n+2 := δn > 0

along with the two equality constraints relating variables x,y and δ. Hence every extreme point of
D2 is defined by the intersection of 2n+ 2 constraints. Since there are two equality constraints, at
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most one inequality from the system (2.10) can be strict. Since
∑2n+2
i=1 ai = 1 and each ai > 0, the

additional condition that there can be at most one strict inequality implies that inequalities of the
set D2 satisfy ak = 1,ai = 0 ∀i 6= k. From this, we conclude that each extreme point of D2 satisfies
(z,b) ∈ [0, 1]n+1 which makes the formulation ∆2 locally ideal.

Theorem 2.5. Formulation ∆1 is not locally ideal.

Proof. Consider an instance with n = 3, B = {0, 1
3 , 2

3 , 1} and f(B) = {0, 4, 2, 3}. The fractional point
{x = 1

3 ,y = 4, δ = (1, 0, 0), z = 1
3 ,b = (0, 0)} is feasible to the LP relaxation of ∆1 but not feasible for

the LP relaxation of ∆2. The fractional point is an extreme point for the LP-relaxation of ∆1, since it
satisfies the following 2n+ 2 = 8 equalities

x = z, δ1 = 1, δ3 = 0, b2 = δ2, δ2 = b1, δ3 = b2,

x =
1
3
δ1 +

1
3
δ2 +

1
3
δ3, and y = 4δ1 − 2δ2 + δ3.

Multiple choice model

The multiple choice model for PLFs was introduced and analyzed in Jeroslow and Lowe [50]
and Balakrishnan and Graves [3]. As discussed in Section 1.1, in this model, a non-negative set of
variablesw := {w1, . . .wn} and an additional set of binary variable b := {b1, . . .bn} are introduced,
with the logical implication that wi = x if x is in the ith interval, and wi = 0 otherwise. Using
a variable upper bound constraint to enforce the logical condition (2.2) with the multiple choice
model gives the following formulation of X:

M1 :=
{
(x,y,w, z,b) ∈ R× R× Rn × [0, 1]× [0, 1]n :

n∑
i=1

wi = x, y =

n∑
i=1

(miwi + cibi), x 6 Bnz,

n∑
i=1

bi = 1, Bi−1bi 6 wi 6 Bibi ∀i ∈ {1 . . .n}
}

.
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Instead, the on-off condition can be formulated by replacing the constraints
∑n
i=1 bi = 1 with∑n

i=1 bi = z, yielding a formulation

M2 :=
{
(x,y,w, z,b) ∈ R× R× Rn × [0, 1]× [0, 1]n :

n∑
i=1

wi = x, y =

n∑
i=1

(miwi + cibi),

n∑
i=1

bi = z, Bi−1bi 6 wi 6 Bibi ∀i ∈ {1 . . .n}
}

.

Theorem 2.6. FormulationM2 is locally ideal.

Proof. Following Balas [4], we write an extended formulation for the convex hull of the union of the
n+ 1 polytopes

X0 = {(0, 0, 0)},

Xi = {(x,y, z) : Bi−1 6 x 6 Bi,y = mix+ ci, z = 1} ∀i ∈ {1 . . .n}

as those (x,y, z) for which there exist vectorsw = [w0, . . .wn], v = [v0, . . . vn],u = [u0, . . .un],b =

[b0, . . .bn] such that the following inequality system is satisfied:

x =

n∑
i=0

wi, y =

n∑
i=0

vi, z =
n∑
i=0

ui, 1 =

n∑
i=0

bi,

w0 = 0, v0 = 0, u0 = 0,

bi > 0 ∀i ∈ {0 . . .n},

Bi−1bi 6 wi 6 Bibi ∀i ∈ {1 . . .n},

vi = miwi + cibi ∀i ∈ {1 . . .n},

ui = bi ∀i ∈ {1 . . .n}.

We can eliminate b0,u, and v from this system to obtain

x =

n∑
i=1

wi, y =

n∑
i=1

(miwi + cibi), z =
n∑
i=1

bi, z 6 1,

bi > 0 ∀i ∈ {1 . . .n},

Bi−1bi 6 wi 6 Bibi ∀i ∈ {1 . . .n},

which is equivalent to the LP relaxation ofM2.
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Theorem 2.7. FormulationM1 is not locally ideal.

Proof. Consider an instance with n = 3, B = {0, 1
3 , 2

3 , 1}, and f(B) = {0, 4, 2, 3}. The point {x =
1
3 ,y = 4,w = (0, 1

3 , 0), z = 1
3 ,b = (0, 1, 0)} is feasible to the linear programming relaxation of M1,

but not feasible for M2. A fractional extreme point of the linear programming relaxation of M1

is {z = 1
3 ,y = 4, x = 1

3 ,w = (0, 1
3 , 0),b = (0, 1, 0)}. The point satisfies the 2n + 3 = 9 equations

x = w1 +w2 +w3, y = 12w1 −6w2 +6b2 +3w3, x = z, b1 +b2 +b3 = 1, 0 = w1,w1 = 1
3b1, 1

3b2 = w2,
2
3b3 = w3, and w3 = b3.

Convex Combination Model

Another popular formulation for PLFs is the convex combination model, also known as the lambda
method. As discussion in Section 1.1, the convex combination model uses continuous variables
λ ∈ Rn+1 and binary variables b ∈ [0, 1]n. The continuous variables are used to express x and y
in terms of the breakpoints B and function values F. The binary variables are used to enforce the
adjacency condition that bi = 1⇒ λj = 0,∀j /∈ {i− 1, i}. Using a variable upper bound to model the
logical on-off condition (2.2) in combination with the most commonly used convex combination
model gives the following formulation of X:

C1 :=
{
(x,y,λ, z,b) ∈ R× R× Rn+1

+ × [0, 1]× [0, 1]n :

x =

n∑
i=0

λiBi, y =

n∑
i=0

λiFi, x 6 Bnz,
n∑
i=0

λi = 1,
n∑
i=1

bi = 1,

λ0 6 b1, λn 6 bn, λi 6 bi + bi+1 ∀i ∈ {1 . . .n− 1}
}

.

Instead, the on-off condition can be directly imposed by replacing
∑n
i=1 bi = 1 and

∑n
i=0 λi = 1

with the constraints
∑n
i=1 bi =

∑n
i=0 λi = z. This gives the following formulation of X:

C2 :=
{
(x,y,λ, z,b) ∈ R× R× Rn+1

+ × [0, 1]× [0, 1]n :

x =

n∑
i=0

λiBi, y =

n∑
i=0

λiFi,
n∑
i=0

λi = z,
n∑
i=1

bi = z,

λ0 6 b1, λn 6 bn, λi 6 bi + bi+1 ∀i ∈ {1 . . .n− 1}
}

.

It has been shown by Padberg [73] and Lee and Wilson [56] that the convex combination model that
uses the constraints

λ0 6 b1, λn 6 bn, λi 6 bi + bi+1 ∀i ∈ {1 . . .n− 1} (2.11)
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to model adjacency is not locally ideal. Padberg [73] gives the following improved formulation of
the adjacency conditions:

n∑
i=j

λi 6
n∑
i=j

bi,
j−1∑
i=0

λi 6
j∑
i=1

bi ∀j = 1, . . . ,n,

which does result in a locally ideal formulation of PLFs. However, in most presentations of the
convex combination model in the literature [27, 15, 42, 36] the non-ideal formulation (2.11) is used.
The convex combination model with constraints (2.11) does not result in a formulation that is locally
ideal, however it does satisfy sharpness, a slightly weaker desirable property. An extended MIP
formulation of a convex set is sharp if the extreme points of the projection of the LP relaxation of the
formulation to the original space of variables (x,y, z in this case) satisfy integrality [50]. Vielma
et al. [102] showed that the convex combination model that uses adjacency constraint (2.11) is sharp.
We now show that the formulation C2 is sharp while C1 is not sharp.

Theorem 2.8. Formulation C2 is sharp.

Proof. Suppose that t = (x,y,λ, z,b) is an extreme point of the linear programming relaxation of C2

with 0 < z < 1. For ε > 0 define the points t+ = (x+,y+,λ+, z+,b+) and t− = (x−,y−,λ−, z−,b−)

as

b+i = (1 + ε)bi, λ+i = (1 + ε)λi, ∀i ∈ {1, . . . ,n}

z+ = (1 + ε)z, x+ =

n∑
i=0

λ+i Bi, y
+ =

n∑
i=0

λ+i Fi

b−i = (1 − ε)bi, λ−i = (1 − ε)λi, ∀i ∈ {1, . . . ,n}

z− = (1 − ε)z, x− =

n∑
i=0

λ−i Bi, y
− =

n∑
i=0

λ−i Fi.

For some ε > 0, the points t+, t− are both feasible for the linear programming relaxation of C2, and
t = 0.5(t+ + t−), so tmust not have been an extreme point.

Theorem 2.9. Formulation C1 is not sharp.

Proof. Consider an instance withn = 3,B = {0, 1
3 , 2

3 , 1}, and f(B) = {0, 4, 2, 3}. One can verify that one
of extreme points of the projection of the linear programming relaxation ofC1 is {x = 1

3 ,y = 4, z = 1
3 },

which does not satisfy the required integrality constraint on z. One can easily verify (using porta)
that the presented point is an extreme point of the corresponding LP-relaxation.
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Figure 2.1: Sample curves modeling ROI for five different product/strategy pairs.
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Other formulations

The disaggregated convex combination model for PLFs uses two sets of non-negative variables
λ := {λi ∀i ∈ {1 . . .n}} and µ := {µi ∀i ∈ {1 . . .n}} and a set of binary variables b := {bi ∀i ∈ {1 . . .n}}.
The disaggregated convex combination model for a PLF is

y =

n∑
i=1

(λiFi + µiFi−1), (2.12)

x =

n∑
i=1

(λiBi + µiBi−1),

1 =

n∑
i=1

bi, (2.13)

bi = λi + µi ∀i ∈ {1 . . .n}. (2.14)

This formulation can be extended to model X by replacing the constraints
∑n
i=1 bi = 1 with∑n

i=1 bi = z. Disaggregated convex combination models that use these constraints are a locally
ideal formulation of X. Vielma and Nemhauser [105] modify the disaggregated convex combination
model to use a logarithmic number of binary variables. Using notation defined in Vielma and
Nemhauser [105], replacing

∑n
i=1 λi = 1 with

∑n
i=1 λi = z is a valid locally ideal reformulation

of model X. For the sake of brevity, we have omitted detailed discussions and proofs concerning
disaggregated convex combination models.
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Table 2.2: Summary of the 120 datasets of the nonlinear knapsack problem AP(X).

Products (|J|) Strategies (|K|) Breakpoints (n) # Instances
50 50 10 20
50 100 10 20

100 100 10 20
50 50 20 20
50 100 20 20

100 100 20 20

2.3 Computational Results

In this section, we illustrate with numerical experiments the impact of using locally ideal formula-
tions (S2 and ∆2) instead of a weaker model (S1 and ∆1) that is not locally ideal.

Sample Application

To make the numerical comparison, we consider an advertising budget allocation problem intro-
duced by Zoltners and Sinha [115]. In this problem, a company is required to allocate an advertising
budgetD among a set K of advertising strategies for a set of P products. Let xjk denote the amount
of the advertising resource allocated to strategy k ∈ K for product j ∈ J. The company incurs a
fixed cost Gj for entering the market with product j ∈ J as well as a variable cost cjk for each unit of
the resource allocated to strategy k ∈ K of product j ∈ J. The ROI is evaluated by piecewise-linear
functions yjk = fjk(xjk) which have the typical form shown in Figure 2.1. A MIP formulation for
this problem is:

max
∑
i∈J

∑
j∈K

yjk

subject to
∑
i∈J

∑
j∈K

cjkxjk +
∑
i∈J

Gjzji 6 D (AP)

(xjk,yjk, zj) ∈ Xjk ∀j ∈ J,k ∈ K

where Xjk is meant to denote that each of the triplets of variables (xjk,yjk, zj) must lie in a set X
(defined in (2.3)) specific to the product/strategy pair. We denote by AP(S1) and AP(∆1) the MIP
formulations of AP that uses S1 and ∆1 respectively to model (2.3) and AP(S2) and AP(∆2) as the
MIP formulation of AP that uses the stronger formulation S2 and ∆2 respectively.
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Dataset Generation

We now discuss the procedure used to generate the datasets for the sample applicaiton problem (AP).
The three components of the datasets are (a) the return on investment functions fjk(·) ∀j ∈ J k ∈ K,
(b) fixed costs Gj ∀j ∈ J for entering each product market and (c) variable costs cjk ∀j ∈ J, k ∈ K

per unit of budget allocated for marketing strategy k ∈ K of product j ∈ J. We now describe how
each of these components were generated.

Return on investment functions In our sample application, the return on investment is evaluated
by piecewise-linear functions fjk(·) which have the typical form shown in Figure 2.1.

Let R(a,b, i,n) denote a random variable that lies between a+ i(b−a)
n

and a+ (i+1)(b−a)
n

with a
distribution a+ b−a

n
(i+β(2, 2)) where β(2, 2) is the beta distribution with both parameters set to 2.

For each product j ∈ J, the domain of fjk(·) ∀k ∈ K was generated using

dj ∼ R(4, 8, j, |J|)

and the range was generated as
rj ∼ R(0.5, 1, j, |J|)

where the notation j overloads both the product j ∈ J and an unique index for the product between 1
and J. The desired s-shaped functions were generated by dividing the domain [0,dj] of fjk(·) ∀k ∈ K

into three parts such that fjk(·) is concave increasing in [0,a1
jk], convex increasing in [a1

jk,a2
jk] and

concave increasing again in [a2
jk,dj]. The random variables a2

jk and a2
j,k were generated using

a1
jk ∼ djR(0.1, 0.5, j, |J|)

a2
jk ∼ djR(0.3, 0.7, j, |J|).

The set of breakpoints Bjki ∀i ∈ {1 . . .n} were calculating by dividing each of the three domains into
approximately n

3 equal parts which can be written as

Bjki = 3i
a1
jk

n
i = 1 . . .

⌊n
3

⌋
Bjki = a

1
jk + 3i

a2
jk − a

1
jk

2n
i =

⌊n
3

⌋
+ 1 . . .

⌊2n
3

⌋
Bjki = a

2
jk + 3i

dj − a
3
jk

n
i =

⌊2n
3

⌋
+ 1 . . .n.
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The corresponding function evaluations Fjki := fjk(Bjki) were generated as

Fjki = b
1
jk

√
Bjki

Bjkbn3 c
i = 1 . . .

⌊n
3

⌋
Fjki = Fjkbn3 c + b

2
jk

( Bjki − Bjkbn3 c

Bjkb 2n
3 c

− Bjkbn3 c

)2
i =

⌊n
3

⌋
+ 1 . . .

⌊2n
3

⌋

Fjki = Fjkb 2n
3 c

+ b3
jk

√√√√ Bjki − Bjkb 2n
3 c

Bjkb 2n
3 c

− Bjkbn3 c
i =

⌊2n
3

⌋
+ 1 . . .n

where b1
jk, b2

jk and b3
jk are random variables distributed by

b1
jk ∼ rjR(0.05, 0.1, j, |J|)

b2
jk ∼ rjR(0.4, 0.7, j, |J|)

b3
jk ∼ rjR(0.7, 1, j, |J|).

Costs and Budget For each strategy k ∈ K and product j ∈ J, the per-unit operating costs were
generated as

cjk ∼ β(2, 2) R(0.8, 1.2, j, |J|) R(0.8, 1.2,k, |K|) ∀j ∈ J,k ∈ K

and the fixed costs were generated as

Gj ∼ EG R(0.5, 1, j, |J|) U(0.8, 1.2) ∀j ∈ J.

where EG = 0.105|J| |K|. This procedure ensured that the total fixed costs are of the same order as
the total variable costs. The overall budget Dwas set to 6EG.

Numerical Results

We report tests conducted on 120 simulated instances of AP(X). We created 20 random instances for
each of the six problem sizes in Table 2.2. All instances were solved to 0.1% optimality using Gurobi
4.5.1 with default options on 2.66GHz Intel Core2 Quad CPU Q9400 processor with 8GB RAM. For
all instances, we compare the quality of the LP relaxation as the percentage gap between the root
LP relaxation value of the MIP formulations AP(S2) and AP(∆2) with the alternate formulations
AP(S1) and AP(∆1) relative to the optimal solution for each instance. We also measure the CPU
time taken (using a single thread) and number of nodes in the search tree.
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Table 2.3: Summary of performance of formulations AP(S2) and AP(S1) on 120 simulated instances.
Arithmetic mean, standard deviation, and geometric mean are shown.

Metric Model A.M St. Dev G.M

LP gap (%) AP(S2) 0.05 0.05 0.03
AP(S1) 19.7 1.5 19.6

Time (s) AP(S2) 16.8 12.0 12.3
AP(S1) 703.0 853.1 255.6

Nodes AP(S2) 26.3 33.1 9.2
AP(S1) 402.9 312.4 314.5

Table 2.4: Summary of performance of incremental models AP(∆2) and AP(∆1) on 120 datasets of
the nonlinear knapsack problem.

Metric Formulation A.M St. Dev G.M

LP relaxation gap(%) AP(∆2) 0.06 0.05 0.03
AP(∆1) 19.66 1.47 19.60

Time (s) AP(∆2) 531.49 1240.89 171.25
AP(∆1) 1131.36 1401.04 481.13

Nodes AP(∆2) 38.10 63.75 7.85
AP(∆1) 179.22 129.51 98.70

SOS2 Model. We compare the two SOS2 modelsAP(S2) andAP(S1). Table 2.3 shows the summary
statistics of our experiment and figure 2.2 plots the empirical cumulative distribution functions
of each of our three performance metrics. The results convincingly demonstrate the advantage of
using the locally ideal formulation AP(S2). The average root gap for AP(S2) was 0.05%, while for
AP(S1) the average root gap was 19.6%. In fact, the best root gap for any instance of AP(S1) was
17.1%. In terms of MIP solve times, AP(S1) was solved on average in 703 seconds, while AP(S2) was
solved 41.8 times faster on average. In the worst case, Gurobi explored 1117 times more nodes on
an instance modeled with AP(S1) than with AP(S2). Clearly, one should use the locally ideal model
AP(S2).

Incremental Model. We compare the two incremental models AP(∆2) and AP(∆1). Table 2.4
shows the summary statistics of our experiment and figure 2.3 plots the empirical cumulative
distribution functions of each of our three performance metrics. Again, our results demonstrate
the advantage of using the locally ideal formulation AP(∆2) over AP(∆1). Formulation AP(∆2)

produced stronger root LP relaxations which resulted the MIP being solved, on average, 2.1x faster
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Figure 2.2: Comparing performance of SOS2 models AP(S2) and AP(S1) on 120 datasets of the
nonlinear knapsack problem.
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than AP(∆1) with some instances being as high as 25x faster.

2.4 Concluding remarks

In this chapter, we present a theoretical and computational comparison of MIP models for PLFs
where a binary indicator variable determines if the function is required to be evaluated. We propose
strong formulations for this general class of MIP models by extending standard textbook PLF models
including the incremental method, SOS2-based models, the multiple choice model, the convex
combination model, and others. We showed in all cases that our formulations are either locally
ideal or sharp, while a standard formulation that uses a variable upper bound constraint is not. Our
numerical experiments demonstrate that our proposed formulations have significant computational
advantages.
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Figure 2.3: Comparing performance of incremental models AP(∆2) and AP(∆1) on 120 datasets of
the nonlinear knapsack problem.
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3 models and solution techniques for production planning problems with
increasing byproducts

In this chapter, we consider a production planning problem where the production process creates a
mixture of desirable products and undesirable byproducts. In this production process, at any point
in time the fraction of the mixture that is an undesirable byproduct increases monotonically as a
function of the cumulative mixture production up to that time. The mathematical formulation of
this continuous-time problem is nonconvex. This chapter is based on results in Sridhar et al. [91].

3.1 Introduction

In this chapter, we study a production planning problem in which the production process creates a
mixture of products P = P+ ∩ P−, where the products p ∈ P+ are useful and the products p ∈ P−

are undesirable byproducts. As more of the mixture is produced, the fraction of the mixture that
is a useful product decreases monotonically. Conversely, the fraction of each byproduct increases
monotonically as a function of cumulative mixture production. Production planning problems with
these characteristics arise in engineering applications like the extraction of natural resources such as
oil and gas [43, 49, 93, 96, 97] from fields where a pressure differential determines the rate at which
the resources are extracted. This pressure difference drops as more of the resources are extracted
which reduces the maximum rate at which more resources can be extracted. In these applications,
the purity of the resources obtained reduces as more of the resources are extracted. The problem
structure studied in this work also naturally appears while modeling the performance of hydro
turbines [15, 72], designing chemical processes [66] and scheduling compressors in petroleum
reservoirs [19].

Figure 3.1: Example production functions.

Total production (vt)

Maximum production rate (f)

Total production (vt)

Product fraction (gp)

Useful product

By-product

We describe and analyze the model for a single production process exhibiting these characteristics.
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We are motivated by applications that contain many processes having these characteristics, which
are linked in some way, such as having common processing facilities or distribution networks.
In Section 3.5 we describe an example application in which the facilities are part of a network
in which demands are to be met. For such applications, the model we develop would be used
for each production facility in the problem. Optimizing production for problems that contain
multiple processes of this structure is complicated because the amount of each product produced is
a nonconvex function of the cumulative mixture production up to that time. In addition, there are
fixed costs associated with starting production, requiring the use of {0,1}-decision variables. We
find that this nonconvex mixed-integer nonlinear programming problem is hard to solve directly
using state-of-the-art software packages such as BARON [94] or Couenne [12], because the general
purpose techniques for relaxing the nonconvex constraints used in these solvers appear to produce
weak lower bounds. Our approach is to develop accurate and computationally useful formulations
for an individual process model, which can then be used in a formulation that plans multiple such
processes.

We now describe the production model for a single production process. Consider a production
horizon [0,L] with x(t) representing the production rate of a mixture of products P at time t ∈ [0,L].
The cumulative production of the mixture up to time t is denoted by v(t) and can be expressed as

v(t) =

∫t
0
x(s)ds, t ∈ [0,L]. (3.1)

As input to the problem, we are given a production function f(·) : R+ → R+ that defines the
maximum production rate of the mixture as a function of cumulative production up to time t.
Hence, x(t) must satisfy:

x(t) 6 f(v(t)), t ∈ [0,L]. (3.2)

For each product p ∈ P, we are given a function gp : R+ → [0, 1], that specifies the fraction of the
mixture that is product p ∈ P as a function of the cumulative mixture production. The rate of
production of product p at time t, denoted by yp(t), is given by:

yp(t) = x(t) gp(v(t)), p ∈ P, t ∈ [0,L]. (3.3)

We make the following assumptions on the nonlinear functions in this model.

Assumption 3.1. The production function f : R+ → R+ is concave, the ratio functions gp : R+ → [0, 1]
are non-increasing for p ∈ P+ (useful products) and non-decreasing for p ∈ P− (byproducts), and the
functions gp,p ∈ P satisfy

∑
p∈P gp(v) = 1 for all v > 0.
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To facilitate modeling of a fixed cost for beginning production at time t ∈ [0,L], the model
contains a binary step function z : [0,L]→ {0, 1} to indicate if production can occur at time t ∈ [0,L].
Let Mv be an upper bound on the maximum cumulative production. Then the following constraint
ensures that production occurs only after the production facility has been opened:

v(t) 6 Mvz(t), t ∈ [0,L]. (3.4)

Constraints (3.1) and (3.4) ensure that once production commences, it may continue until the end of
the time horizon. In other words, for any t1, t2 ∈ [0,L], if t1 > t2 then z(t1) > z(t2).

Figure 3.1 gives an example of how the maximum production rate f(·), useful product fraction
gp(·),p ∈ P+, and byproduct fraction gp(·),p ∈ P− evolve as a function of the cumulative mixture
production. Our model can be extended to the case where f(·) is not necessarily concave and the
functions gp(·) ∀p ∈ P are not necessarily monotone. The primary modification that would be
required is in the method for constructing the piecewise-linear approximations that are used in our
formulation.

A time-discretization of this production planning problem is required to obtain a model that is
suitable for implementation and numerical evaluation. Tarhan et al. [93] introduce a natural discrete-
time mixed-integer nonlinear (MINLP) formulation (reviewed in Section 3.2) which discretizes
the production horizon [0,L] into T time periods and transforms constraints (3.1)-(3.4) into their
discrete-time counterparts.

Contributions

We highlight three main contributions of this work. The first contribution of our work is to introduce
an alternative discrete-time MINLP formulation that is more accurate than the one which appeared
in [93]. This alternative formulation has also been independently derived by Gupta and Grossmann
[43]. The key difference between the alternative formulation and that proposed in [93] lies in the
discretization of constraints (3.3). In [93], the authors discretize the product production rate (yp,t)
during a time period t by multiplying the discretized production rate at the start of a time period
(xt) with the product production ratio at the end of the previous time period (gp(vt−1)). We show
in Section 3.2 that this discretization yields an MINLP formulation that may have significant errors
in the approximation of the actual product production rate yp(t).

In this work, we propose an alternative discrete-time MINLP formulation that exactly calculates
the amount of product produced during each time period. This formulation is based on the cumula-
tive product production

∫t
0 yp(s)ds. In Section 3.2, we demonstrate how this reformulation results in

a model that is a more accurate representation of the underlying continuous-time formulation. This
improvement in accuracy is realized irrespective of the nature of the production functions f(·) and
gp(·). However, if the production functions satisfy the concavity and monotonicity assumptions, our
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proposed reformulation exploits the property that the integral of a nondecreasing (nonincreasing)
function is convex (resp. concave) thereby transforming the terms involving products of non-convex
functions (xtgp(vt−1)) into univariate convex/concave functions representing the cumulative product
production. As a result, as demonstrated by numerical experiments in Section 3.5, this reformulation
yields a model that is not only more accurate but is also easier to approximately solve.

As the second contribution of this work, we derive three different mixed-integer linear program-
ming (MILP) models that approximate or relax the convex/concave functions. The first model,
piecewise-linear approximation (PLA), approximates each of the nonlinear functions involved using
piecewise-linear forms modeled with variables that are constrained to be special ordered sets of
type 2 (SOS2) [10]. The PLA model is an approximation of the production planning problem but
does not provide a bound on the optimal value of the MINLP model. In order to provide guarantees
on solution quality, we also propose two MILP relaxations of the MINLP model based on piecewise-
linear under- and over- approximations of the nonlinear functions. The 1-secant relaxation (1-SEC)
uses multiple tangents and a single secant to envelope the convex/concave cumulative production
functions. An advantage of this formulation is that it does not require SOS2 variables. We also
extend the 1-SEC relaxation to the k-secant relaxation (k-SEC), which uses multiple tangents and
multiple secants to relax the convex/concave cumulative production function. . The addition of
multiple secants requires the use of SOS2 variables, similar to the PLA model. In Section 3.5, we
compare the MILP formulations in terms of computational difficulty to solve, quality of solution
produced, and in the case of the relaxations, the quality of the bound produced.

The third contribution of this work is to demonstrate two techniques for improving the LP
relaxations of the proposed MILP formulations. These techniques exploit two special properties of
this problem. First, a model of each of the nonlinear functions is required only when a corresponding
binary indicator variable is set to one. This allows a formulation with a better LP relaxation bound
to be obtained by slightly modifying the constraints of the SOS2 formulation. Second, we exploit the
fact that the cumulative total production, which is the argument to the nonlinear functions being
approximated, is increasing over time. This enables the derivation of valid inequalities that relate
the variables of the SOS2 approximations of these functions in consecutive time periods to each
other.

One special property of this production planning problem is that all the nonlinear production
functions f(·) and gp(·),p ∈ P share the same domain [0, Mv] because they are functions of the
same argument v(t). One way to model piecewise-linear approximations and relaxations of these
nonlinear functions is to introduce a set of break points for each function approximation/relaxation.
The advantage of this method is that the choice of break points approximating each function f(·)
and gp(·),p ∈ P is flexible, thereby allowing each function to use break points that provide the best
approximation for that function. However, this approach requires introducing a separate set of
branching entities (SOS2 variables) for each function, which can significantly increase the difficulty
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in solving the resulting model. An alternate model introduces a single set of SOS2 variables that are
shared between all the production functions f(·) and gp(·),p ∈ P. Such a formulation is possible
only if the functions share the same domain and use the same set of break points in that domain.

While sharing the SOS2 variables is computationally desirable, the requirement that the same set
of break points be used for all functions may reduce the accuracy of each of the individual function
approximations/relaxations. In addition, most existing algorithms [17, 83, 94] for finding piecewise-
linear approximations/relaxations are designed only for a single univariate convex/concave function.
In Section 3.4, we propose nonlinear programming (NLP) formulations for determining the best
possible piecewise-linear approximations and relaxations of multiple univariate convex/concave
functions, with the requirement that the piecewise-linear functions share the same set of break
points. We demonstrate that our method can reap the computational benefits of sharing break
points while still maintaining the accuracy of each function approximation. The recent work of [39]
has also considered the problem of finding piecewise-linear approximations of multiple functions
sharing the same domain and using the same set of break points. The most important difference
in our work is that in addition to finding a piecewise linear approximation, we also consider the
problem of finding a good piecewise-linear relaxation.

Gupta and Grossmann [43] independently discovered the alternative formulation that we present
in Section 3.2, and similarly found that this formulation yields computational benefits and improved
formulation accuracy. Gupta and Grossmann also derived a MILP formulation of a piecewise-linear
approximation of the alternative formulation. While the key idea of this reformulation is the same,
there are a number of differences which we now highlight. First, our production model is slightly
different in that we consider a production process in which we are given functions for the fraction of
the total mixture that corresponds to each product, as opposed to the ratio of one component of
the mixture to another. This formulation may be advantageous numerically because the fraction
is bounded between zero and one. More significantly, there are several differences between our
approaches for obtaining piecewise-linear approximations. In addition to obtaining a piecewise-
linear approximation as in [43], we also obtain piecewise-linear relaxations, which can be used to
obtain bounds on the best possible MINLP solution value. We also show how the MILP formulations
of the piecewise-linear models can be strengthened, and when necessary we use special ordered sets
of type II (SOS2) to model the piecewise-linear functions, as opposed to explicitly introducing binary
decision variables as in [43]. The SOS2 formulation is locally ideal, which is a desirable property for
a mixed-integer programming formulation, whereas the formulation used in [43] does not have
this property [103]. Finally, we study the problem of finding piecewise-linear approximations and
relaxations when multiple functions sharing the same argument are to be approximated, with the
restriction that they be approximated using the same set of break points, which is an important
component of a solution process that uses this formulation.

The remainder of this chapter is organized as follows. In Section 3.2, we present the two discrete-
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time MINLP formulations. In Section 3.3, we provide the three MILP approximations/relaxations
of the proposed MINLP formulation, and demonstrate how these formulations can be strengthened.
In Section 3.4, we introduce NLP formulations that identify piecewise-linear functions that most
accurately approximate and relax multiple nonlinear functions that share the same domain. In
Section 3.5 we present a computational study that compares the accuracy and performance of all
formulations introduced in Section 3.2 and 3.3. We close with concluding remarks in Section 3.6.

3.2 Discrete-Time Formulations

This section describes two discrete-time MINLP formulations of the production planning problem
that considers a decision horizon of finite decision-making periods T = {1, 2, . . . , T } each of length
∆t (t ∈ T), such that L =

∑T
t=1 ∆t. For each t ∈ T, let xt represent the total mixture production

quantity during period t, vt represent the cumulative mixture production up to and including time
period t, and yp,t represent the amount of product p ∈ P produced in period t. Also, let the binary
variable zt ∈ {0, 1} indicate if production can occur during period t ∈ T.

The discrete-time MINLP formulations we present in this section all include the constraints

vt = vt−1 + xt, t ∈ T (3.5a)

zt > zt−1, t ∈ T\{1} (3.5b)

vt 6 Mv zt, t ∈ T (3.5c)

xt 6 ∆t f(vt−1), t ∈ T. (3.5d)

where v0 := 0 and P := |P|. For ease of notation, we define

Y :=
{
z ∈ {0, 1}T , x ∈ RT+, v ∈ RT+1

+ ,y ∈ RP×T+ : (3.5)
}

.

Constraint (3.5a) is a direct discrete-time analog to (3.1) and (3.5b) simply states that once a facility
is opened it must stay open. The constraint (3.5c) is a discrete-time analog of (3.4). Constraint (3.5d)
is an approximation of the continuous-time constraints (3.2), where we assume that the maximum
flow rate during period t ∈ T is determined by the cumulative production at the beginning of the
period vt−1 and the interval length ∆t. Alternative discretizations of (3.2) are possible, such as one
that limits the production rate based on the cumulative production at the end of the time period,
or one that uses an average of f(vt−1) and f(vt). However, these alternative discretizations do not
affect this work, so we consistently use equation (3.5d) in all of our formulations.
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Formulation MINLP1

The first discrete-time formulation is MINLP1, defined as the set of (z, x, v,y) ∈ Y that satisfy:

yp,t = xtgp(vt−1), p ∈ P, t ∈ T. (3.6)

Constraint (3.6) is a natural discretization of (3.3), which approximates the amount of each product
p ∈ P produced in period t by multiplying the total mixture production in the period, xt, with the
corresponding product p fraction, gp(vt−1) determined based on the cumulative production up to
the beginning of period t. Such a discrete-time approximation has been used, for example, in [93].

There are two drawbacks of formulation MINLP1. To describe them, we first reformulate (3.6)
as a combination of two constraints involving intermediate decision variables u ∈ RP×T+ :

yp,t = xtup,t, p ∈ P, t ∈ T (3.7a)

up,t = gp(vt−1), p ∈ P, t ∈ T. (3.7b)

The first drawback is that MINLP1 contains two types of nonconvexities: the bilinear terms, written
explicitly in (3.7a), and the nonconvex functions gp(·) for each product p ∈ P in (3.7b). This
combination of nonconvexities results in a formulation that is computationally difficult to solve,
even approximately, as we illustrate in Section 3.5. The second drawback of MINLP1 is the
inaccuracy of the discrete-time approximation used in (3.6). We next discuss an alternative MINLP
formulation that eliminates this inaccuracy.

Formulation MINLP2

The second formulation is obtained by using an alternative approach to calculate yp,t, the amount
of each product p ∈ P that is produced in period t ∈ T. First, we exactly calculate the cumulative
amount of product p ∈ P produced up to and including time period t ∈ T using the continuous-time
formulation. We define wp(t) as the cumulative production for each product p ∈ P up to time
t ∈ [0,L]. Specifically, for any p ∈ P and t ∈ [0,L],

wp(t) :=

∫t
0
yp(s)ds =

∫t
0
x(s)gp(v(s))ds (3.8)

=

∫v(t)
0

gp(θ)dθ
(

since dv(t)
dt

= x(t)
)

(3.9)

:= hp(v(t)). (3.10)
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The change in the variables of the integral from equation (3.8) to (3.9) yields hp(·), the cumulative
production function which exactly evaluates the total amount of product p ∈ P produced up to
time t ∈ [0,L]. Now, we evaluate yp(t), the product production rate at a time t ∈ [0,L] using the
relationship

yp(t) =
dwp(t)

dt
p ∈ P, t ∈ [0,L]. (3.11)

A time-discretization of the constraints (3.10) and (3.11) yields an alternate formulation that
uses variables wp,t: MINLP2 is the set of (z, x, v,y,w) ∈ Y × RP×T+ that satisfy

wp,t = hp(vt), p ∈ P, t ∈ T (3.12a)

yp,t = wp,t −wp,t−1, p ∈ P, t ∈ T (3.12b)

wherewp,0 := 0 for p ∈ P. Because the formulations MINLP2 and MINLP1 share the constraints (3.5)
included in Y, they model the bounds on the mixture production variables, xt 6 ∆tf(vt−1), in the
same way. However, in contrast to equation (3.12), formulation MINLP1 evaluates the cumulative
product production wp,t as

wp,t
∑
s6t

yp,s =
∑
s6t

xsgp(vs−1), p ∈ P, t ∈ T. (3.13)

Equation (3.13) indicates that MINLP1 assumes that the product production fraction remains fixed
at gp(vt−1) through the whole time period t. . Figure 3.2 illustrates the difference in the calculation
of the product production yp,t using formulations MINLP1 and MINLP2 for a problem with four
time periods. The total production up to and including time period t is denoted by vt for each
t. The hatched region represents the cumulative production wp,t calculated using equation (3.13)
of the formulation MINLP1. In (3.13), the product fraction is assumed fixed throughout a time
period, and so the estimate of the amount produced in a period is given by the area of the rectangle
having base length equal to the total mixture amount produced in the period (xt = vt − vt−1) and
the height corresponding to that fixed product fraction, gp(vt−1). In contrast, the shaded region
illustrates the correct calculation of the cumulative production production wp,t using hp(·) defined
in equation (3.12a) of formulation MINLP2. Clearly, MINLP1 overestimates the amount of useful
product and understimates the amount of byproduct.

Formulation MINLP2 also has two desirable computational properties. First, the total mixture
production xt and individual product productions yp,t are evaluated using univariate functions
f(·) and hp(·),p ∈ P, thereby eliminating the need to relax the product terms in equation (3.6).
This enables us to derive univariate piecewise-linear approximations and relaxations, described
in section 3.3, which, as we demonstrate in our numerical experiments in section 3.5, can yield
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Figure 3.2: Differences in the estimation of product production yp,t using MINLP1 and MINLP2.
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high quality solutions and relaxation bounds. Second, since gp(·) is non-increasing for useful
products p ∈ P+, and gp(·) is non-decreasing for byproducts p ∈ P−, it follows that hp(·) is concave
for p ∈ P+ and convex for p ∈ P−. Hence, product production profiles yp,t can be evaluated as a
difference of univariate convex functions for byproducts and as a difference of univariate concave
functions for useful products.

3.3 Piecewise-Linear Approximations and Relaxations

MINLPs are challenging to solve since they may include both nonlinear (and possibly nonconvex)
functions and integer variables. A common approach is to approximate the nonlinear functions
with piecewise-linear functions, and then solve the corresponding approximation as a mixed-integer
linear program (MILP) (e.g., [3, 10, 27, 37, 56, 64, 83, 104, 103]). In this section, we describe one MILP
approximation and two MILP relaxations of the set MINLP2.

The formulations in this section are based on piecewise-linear functions that either approximate
or provide bounds on f(·) and hp(·), p ∈ P, over the domain. A piecewise-linear function f̄ having
m line segments and domain [0, Mv] is defined using break points B ∈ Rm+1 with 0 = B0 < B1 <

B2 < · · · < Bm = Mv, and function values F = (F0, F1, . . . , Fm) at these points:

f̄(v;B, F) := Fk−1 +

(
Fk − Fk−1

Bk − Bk−1

)
(v− Bk−1), Bk−1 6 v 6 Bk, k = 1, . . . ,m. (3.14)

Similarly, the piecewise-linear functions h̄p for p ∈ P are defined as follows:

h̄p(v;B,Hp) := Hp,k−1 +

(
Hp,k −Hp,k−1

Bk − Bk−1

)
(v− Bk−1), Bk−1 6 v 6 Bk, k = 1, . . . ,m (3.15)

where Hp ∈ Rm+1, p ∈ P. The choice of the break points B and piecewise-linear function values,
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F and Hp,p ∈ P, depends on whether we are seeking an approximation as in Section 3.3, or a
relaxation, as in Section 3.3.

Piecewise-linear approximation (PLA)

The first piecewise-linear approximation is obtained by choosing break-points B̂, and function values
F̂ and Ĥp,p ∈ P, such that f̄(v; B̂, F̂) ≈ f(v) and h̄p(v; B̂, Ĥp) ≈ hp(v),p ∈ P over v ∈ [0, Mv]. Figure
3.3 demonstrates an approximation scheme with F̂k = f(B̂k) and Ĥp,k = hp(Bk), i.e., each function
approximation is constituted from linear approximations taken at points that lie on the curve. We
assume that Ĥp,0 = hp(0) (= 0), so that h̄p(0; B̂, Ĥp) = hp(0) for each p ∈ P. In Section 3.4 we
discuss a method for choosing the break points B̂ and function approximation values F̂ and Ĥp.

The piecewise-linear approximation model is then obtained by replacing the functions f(·) and
hp(·) for p ∈ P with their piecewise-linear approximations f̄(· ; B̂, F̂) and h̄p(· ; B̂, Ĥp) for p ∈ P in
(3.5d) and (3.12a), respectively, yielding:

xt 6 ∆t f̄(vt−1; B̂, F̂), t ∈ T (3.16a)

wp,t = h̄p(vt; B̂, Ĥp), p ∈ P, t ∈ T. (3.16b)

Note that, if the function approximations f̄ and h̄ are obtained by using the function values at the
break points, then (3.16a) is a restriction of (3.5d), whereas (3.16b) is an approximation.

We next discuss how to model (3.16) using linear constraints and variables that are constrained
to be a special ordered set of type 2 (SOS2) [10]. Define M = {0, 1, . . . ,m}. For each period t ∈ T, we
introduce a set of non-negative decision variables λt,k, k ∈ O which are constrained to be SOS2:
at most two elements in the set can be non-zero, and these two non-zero elements must be in
adjacent positions (with respect to the ordering). Then, a piecewise-linear approximation of the
formulation MINLP2 is obtained using additional variables λ ∈ RT×(m+1)

+ and replacing (3.16)
with the following constraints:

1 =
∑
k∈O

λt,k, t ∈ T (3.17a)

vt =
∑
k∈O

B̂k λt,k, t ∈ T (3.17b)

xt 6 ∆t
∑
k∈O

F̂k λt−1,k, t ∈ T (3.17c)

wp,t =
∑
k∈O

Ĥp,k λt,k, p ∈ P, t ∈ T (3.17d)

{λt,k | k ∈ O} ∈ SOS2, t ∈ T. (3.17e)
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Figure 3.3: Piecewise-linear approximation model (PLA).
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For each t ∈ T, equations (3.17a) and (3.17b) ensure vt is written as a convex combination of the
break points {B̂k | k ∈ M}, and (3.17c) and (3.17d) model f̄(vt; B̂, F̂) and h̄p(vt; B̂, Ĥp) for p ∈ P as
a corresponding convex combination of the function values. The constraints (3.17e) then ensure
that the convex combination is obtained only by using adjacent break points [9]. We adopt the
convention that λ0,0 = 1 and λ0,k = 0 for k 6= 0, so that (3.17c) for t = 1 enforces x1 6 ∆1f(0) which
is consistent with the approximation (3.16a) because v0 = 0.

To define a formulation that uses the model (3.17), first define the setW, which will be used in
all formulations in this section, as

W :=
{
z ∈ {0, 1}T , x ∈ RT+, v ∈ RT+1

+ ,y ∈ RP×T+ ,w ∈ RP×T+ , λ ∈ RP×(T+1)
+ :

vt = vt−1 + xt, t ∈ T

zt > zt−1, t ∈ T\{1}

yp,t = wp,t −wp,t−1, p ∈ P, t ∈ T
}

.

The constraints in the definition ofW are just restatements of (3.5a), (3.5b), and (3.12b). Then, we
define the formulation PLA by:

PLA := {(z, x, v,y,w, λ) ∈W : (3.17), vt 6 Mvzt, t ∈ T}.

The constraints vt 6 Mvzt, t ∈ T are a restatement of (3.5c), which enforce that vt = 0 when zt = 0.
PLA approximates the formulation MINLP2 but is not guaranteed to be either a restriction nor

a relaxation of MINLP2. PLA includes integer restrictions and SOS2 constraints, both of which can
be directly handled by commercial integer programming software.
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We next discuss two techniques for improving the linear programming relaxation of the approx-
imation PLA. The first is an application of a technique introduced in [90]. The idea is to exploit
the fact that, when zt = 0, the models of the functions f̄(vt; B̂, F̂) and h̄p(vt; B̂, Ĥp) for p ∈ P are not
necessary, as in that case we immediately know that in this case xt = vt = yp,t = wp,t = 0, p ∈ P,
and these conditions can all be obtained by replacing the constraint (3.17a) with

zt =
∑
k∈O

λt,k, t ∈ T. (3.18)

In addition, with this substitution, the inequalities vt 6 Mvzt, t ∈ T also become redundant because
zt = 0 already implies vt = 0 via (3.18) and (3.17b). We define PLA-S as the formulation that
includes (3.18) but excludes vt 6 Mvzt, t ∈ T and (3.17a), specifically,

PLA-S = {(z, x, v,y,w, λ) ∈W : (3.17b) − (3.17e), (3.18)}.

The following proposition proves the validity of the formulation PLA-S.

Proposition 3.1. Proj(z,x,v,y,w)(PLA) = Proj(z,x,v,y,w)(PLA-S).

Proof. Let (z, x, v,y,w) ∈ Proj(z,x,v,y,w)(PLA) so there exists λ ′ such that (z, x, v,y,w, λ ′) ∈W and
satisfies vt 6 Mvzt, t ∈ T and (3.17). Let λt,k = λ ′t,kzt for all t ∈ T,k ∈M, so that (3.18) and (3.17e)
hold by construction. Let t ∈ T. If zt = 1, then λt,k = λ ′t,k for k ∈ M and hence (3.17b) - (3.17d)
trivially hold. Now suppose zt = 0 so that λt,k = 0 for k ∈ M. The inequalities (3.5c) imply
that vt = 0, and hence xt = 0 follows from vt = vt−1 + xt. Also, because vt = 0 and B̂k > 0
for k > 0, (3.17b) implies that λ ′t,0 = 1. Therefore, (3.17d) implies wp,t = 0 for each p ∈ P since
Ĥp,0 = 0. Thus, (3.17b) - (3.17d) all hold with zeros on both sides of the equations, and thus
(x, z, v,y,w) ∈ Proj(z,x,v,y,w)(PLA-S).

Now let (z, x, v,y,w) ∈ Proj(z,x,v,y,w)(PLA-S) so there exists λ such that (z, x, v,y,w, λ) ∈ W
satisfy (3.17b) - (3.17e) and (3.18). Let t ∈ T. If zt = 1, set λ ′t,k = λt,k for all k ∈ M. If zt = 0, set
λ ′t,0 = 1 and λ ′t,k = 0 for k > 0. Then it is easy to check that (z, x, v,y,w, λ ′) ∈ PLA, which yields
the result.

The following proposition shows that PLA-S has a stronger LP relaxation than PLA. For a set S
defined by linear inequalities and integrality or SOS2 constraints, we define R(S) as the polyhedral
relaxation of S, obtained by keeping the linear inequalities defining S but dropping the integrality
and SOS2 constraints in S.

Proposition 3.2. Proj(z,x,v,y,w)R(PLA-S) ⊆ Proj(z,x,v,y,w)R(PLA) and the inclusion can be strict.

Proof. Let (z, x, v,y,w) ∈ Proj(z,x,v,y,w)R(PLA-S) and so let λ be such that (z, x, v,y,w, λ) ∈ R(PLA-S).
By (3.17b) and (3.18), for each t ∈ T, vt =

∑
k∈O B̂k λt,k 6

∑
k∈O λt,kMv 6 Mvzt. Next, for each
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t ∈ T, let λ ′t,0 = λt,0+1−zt and λ ′t,k = λt,k for k ∈M\{0}. Then
∑
k∈M λ ′t,k =

∑
k∈M λt,k+1−zt = 1

by (3.18) and so (3.17a) holds. Also, vt =
∑
k∈M B̂kλt,k =

∑
k∈M B̂kλ

′
t,k+(1−zt)B̂0 =

∑
k∈M B̂kλ

′
t,k

since B̂0 = 0, and so (3.17b) holds. (3.17c) and (3.17d) hold by an analogous argument. Thus,
(z, x, v,y,w, λ ′) ∈ R(PLA) and the first claim follows. Next, consider an instance with T = 1, P = ∅
(so there are no y or w variables and the index t can be dropped) and with break points (B̂0, B̂1, B̂2)

= (0, 1/2, 1) and function values (F̂0, F̂1, F̂2) = (0, 1/2, 0). The point (z, x, v) = (1/2, 1/2, 1/2) is
in Proj(z,x,v)R(PLA) since it is easy to check that (z, x, v, λ) ∈ R(PLA) with λ = (0, 1, 0). How-
ever, (1/2, /1/2, /1/2) /∈ Proj(z,x,v)R(PLA-S) as there is no λ ′ ∈ R3

+ that satifies (3.18), (3.17b)
and (3.17c). Indeed, (3.18) and (3.17b) take the form λ ′0 + λ

′
1 + λ

′
2 = 1/2 and (1/2)λ ′1 + λ ′2 = 1/2,

which because λ ′ > 0 implies λ ′0 = λ ′1 = 0 and λ ′2 = 1/2. But then (3.17c) is violated because
x = 1/2 > 0 =

∑2
k=0 λ

′
kF̂k.

Results in [90] also demonstrate that MILP formulations of similar structure which use (3.18)
are locally ideal [74] in the sense that the extreme points of the LP relaxation of such formulations,
in the absence of other constraints, satisfy the integrality/SOS2 property.

The next technique for improving the formulation PLA exploits the fact that we are building
piecewise-linear models of multiple functions, and that the arguments of these functions, vt for
t ∈ T, are related by the inequalities vt > vt−1 for t ∈ T.

Proposition 3.3. Let (z, x, v,y,w, λ) ∈ PLA-S. Then, λ satisfies the inequalities:

m∑
k=k′

λt,k >
m∑
k=k′

λt−1,k, k ′ ∈M, t ∈ T \ {1}. (3.19)

Proof. Let t ∈ T \ {1} and k ′ ∈ M. If zt−1 = 0, then
∑m
k=0 λt−1,k = 0 and so (3.19) holds trivially.

Therefore, assume zt−1 > 0, and so also zt > 0 because zt > zt−1. Then, let k∗1 = max{k ∈ M |

λt−1,k > 0} and k∗2 = max{k ∈ M | λt,k > 0}. Then, because vt > vt−1, (3.17e) implies k∗1 6 k∗2 .
Observe that, if k ′ > k∗1 , then (3.19) is trivial because the right-hand side is zero, so assume k ′ 6 k∗1 .
If k∗1 = 0, then k ′ = 0 and (3.19) holds because

∑m
k=0 λt,k = zt > zt−1 =

∑m
k=0 λt−1,k. Thus, assume

k∗1 > 0. Then (3.17e) implies λt−1,k = 0 for all k /∈ {k∗1 ,k∗1 − 1} and λt,k = 0 for all k /∈ {k∗2 ,k∗2 − 1}.
Next, if k ′ < k∗2 then

m∑
k=k′

λt,k = zt > zt−1 >
m∑
k=k′

λt−1,k

so that (3.19) holds. The remaining case is k ′ > k∗2 and k ′ 6 k∗1 , which reduces to k ′ = k∗1 = k∗2

because k∗1 6 k∗2 . Then (3.17b) implies that B̂k′−1λt−1,k′−1 + B̂k′λt−1,k′ = vt−1 and B̂k′−1λt,k′−1 +

B̂k′λt,k′ = vt. Then, using vt > vt−1, λt−1,k′−1 + λt−1,k′ = 1, and λt,k′−1 + λt,k′ = 1, it follows that
λt,k′ > λt−1,k′ which implies (3.19).
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Figure 3.4: Piecewise-linear relaxation model with a single secant (SEC).
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We define PLA-SS as the formulation obtained by adding the valid inequalities (3.19) to PLA-S,
specifically:

PLA-SS = {(z, x, v,y,w, λ) ∈W : (3.17b) − (3.17e), (3.18), (3.19)}.

A special property of this problem is that for each t ∈ T, the nonlinear production functions
f(vt) and hp(vt),p ∈ P are functions of the same argument vt. We have exploited this property by
introducing a single set of SOS2-constrained variables {λt,k | k ∈M} to simultaneously approximate
all these functions of vt. In order to do this, we require that the set of break points in the interval
[0, Mv]used to build the piecewise-linear approximations of f(vt) andhp(vt),p ∈ Pmust be the same
for each of these functions. The potential drawback of this is that this added restriction may lead to
a less accurate approximation of these functions for the same number of break points, compared to
an approach that allows the break points to be selected separately for each function. However, the
latter approach would require introducing a different set of SOS2-constrained variables for each
function and each t, yielding a formulation with many more variables, and more significantly, many
more SOS2 constraints.

Relaxations

In this section we present methods for using piecewise-linear functions to obtain MILP formulations
that are a relaxation of MINLP2. Thus, the optimal value of a problem in which one of these MILP
formulations is used in place of MINLP2 yields a bound on the best possible solution to MINLP2.
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Secant Relaxation (SEC)

To obtain the first relaxation, we assume we choose break points B̄ and functions values F̄ and
H̄p,p ∈ P such that

f(v) 6 f̄(v; B̄, F̄), v ∈ [0, Mv], (3.20a)

hp(v) 6 h̄p(v; B̄, H̄p), v ∈ [0, Mv], p ∈ P+ (3.20b)

hp(v) > h̄p(v; B̄, H̄p), v ∈ [0, Mv], p ∈ P− (3.20c)

and such that the piecewise-linear functions f̄(v; B̄, F̄) and h̄p(v; B̄, H̄p),p ∈ P+ are concave, the
piecewise-linear functions h̄p(v; B̄, H̄p),p ∈ P− are convex, and h̄p(0; B̄, H̄p) = 0 for p ∈ P. Figure
3.4 illustrates one such choice of B̄, F̄, and H̄p,p ∈ P.

We now obtain a relaxation of MINLP2 by replacing equations (3.5d) and (3.12a) with the
following:

xt 6 ∆tf̄(vt−1; B̄, F̄), t ∈ T (3.21a)

(H̄p,m/Mv)vt 6 wp,t 6 h̄p(vt; B̄, H̄p), p ∈ P+, t ∈ T (3.21b)

h̄p(vt; B̄, H̄p) 6 wp,t 6
(
H̄p,m/Mv

)
vt, p ∈ P−, t ∈ T. (3.21c)

It is immediate from (3.20a) that (3.21a) is a relaxation of (3.5d). For p ∈ P, the constraint (3.12a),
wp,t = hp(vt), is relaxed by using h̄p(vt; B̄, H̄p) as an upper bound on hp(vt). Because hp(v)
is concave for p ∈ P+, the secant inequality hp(v) > hp(0) + ((hp(Mv) − hp(0))/(Mv − 0))v =

(H̄p,m/Mv)v is valid for v ∈ [0, Mv]. Similarly, for byproducts p ∈ P−, the function hp(vt) is convex
so the secant provides an upper bound over [0, Mv], and the lower bound is obtained using the
piecewise-linear function h̄p(v; B̄, H̄p).

The constraints (3.21) can be compactly formulated using the variables λ ∈ RT×(m+1)
+ with the

constraints:

1 =
∑
k∈O

λt,k, t ∈ T (3.22a)

vt =
∑
k∈O

B̄k λt,k, t ∈ T (3.22b)

xt 6 ∆t
∑
k∈O

F̄k λt−1,k, t ∈ T (3.22c)

wp,t =
∑
k∈O

H̄p,k λt,k, p ∈ P, t ∈ T. (3.22d)

The equations (3.22b) and (3.22d) enforce that for each p ∈ P, t ∈ T, (vt,wp,t) are written as a convex
combination of the points (B̄k, H̄p,k),k ∈ O, which is equivalent to (3.21b) for p ∈ P+ and to (3.21c)
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for p ∈ P−. Observe that, although we use λ variables and the convex combination constraints (3.22a)
as in the formulation PLA, in SEC we do not need to enforce the SOS2 constraints as in (3.17e). This
is because in this case, for a fixed binary vector z, the feasible region we are modeling is a polyhedral
set as illustrated in Figure 3.4. Note that this polyhedral set could alternatively be formulated using
linear inequalities to define the lower and upper limits of the regions. We choose to use this extreme
point based formulation of these polyhedra because this requires fewer constraints and has a close
connection to the next formulation we will present.

We let SEC be the MILP formulation defined as follows:

SEC = {(z, x, v,y,w, λ) ∈W : (3.22), vt 6 Mvzt, t ∈ T}.

Similar to formulation PLA, we share the same sets of break points {B̄k | k ∈ O} across the P + 1
piecewise-linear functions f̄(· ; B̄, F̄) and h̄(· ; B̄, H̄p),p ∈ P.

As with formulation PLA, we can improve the LP relaxation of the formulation SEC by replacing
the constraint (3.22a) with (3.18), and also removing the constraints vt 6 Mvzt, t ∈ T which are
then redundant, obtaining formulation SEC-S defined as

SEC-S = {(z, x, v,y,w, λ) ∈W : (3.18), (3.22b) − (3.22d)}.

Because SEC does not include SOS2 constraints, the inequalities (3.19) will not improve the LP
relaxation, and so are not considered for SEC-S.

k-Secant Relaxation (k-SEC)

As Figure 3.4 illustrates, the formulation SEC relaxes the constraints wp,t = hp(vt) to allow points
that lie in the shaded feasible region. The use of a single secant inequality to obtain a lower bound on
hp(v) for p ∈ P+, or an upper bound on hp(v) for p ∈ P− may allow solutions in the relaxation that
are far from being feasible. We can obtain a tighter relaxation by using piecewise-linear functions
for this purpose, as illustrated in Figure 3.5.

As in Section 3.3, we assume we choose break points B̄ and functions values F̄ and H̄p,p ∈ P

that satisfy (3.20). In addition, we choose function values H̃p,p ∈ P that satisfy

hp(v) > h̄p(v; B̄, H̃p), v ∈ [0, Mv], p ∈ P+ (3.23a)

hp(v) 6 h̄p(v; B̄, H̃p), v ∈ [0, Mv], p ∈ P−. (3.23b)

We can then obtain a relaxation of the constraints (3.5d), xt 6 ∆tf(vt−1), t ∈ T and (3.12a),
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wp,t = hp(vt), t ∈ T, using variables λ ∈ RT×(m+1)
+ , the constraints (3.22a) - (3.22c), and∑

k∈O

H̃p,k λt,k 6 wp,t 6
∑
k∈O

λt,kH̄p,k, p ∈ P+, t ∈ T (3.24a)∑
k∈O

H̄p,k λt,k 6 wp,t 6
∑
k∈O

λt,kH̃p,k, p ∈ P−, t ∈ T (3.24b)

{λt,k | k ∈ O} ∈ SOS2, t ∈ T. (3.24c)

We let k -SEC be the resulting MILP formulation:

k -SEC =
{
(z, x, v,y,w, λ) ∈W : (3.22a) − (3.22c), (3.24), vt 6 Mvzt, t ∈ T

}
.

Figure 3.5 illustrates the difference between formulations SEC and k -SEC.
Again, as with formulation PLA, we can improve the LP relaxation of the formulation k -SEC by

replacing the constraint (3.17a) with (3.18), and also removing the constraints vt 6 Mvzt, t ∈ T

which are then redundant. In addition, because k -SEC includes SOS2 constraints, the inequal-
ities (3.19) have the potential to further improve the LP relaxation. We define the formulation
k -SEC-SS as:

k -SEC-SS =
{
(z, x, v,y,w, λ) ∈W : (3.18), (3.19), (3.22b) − (3.22c), (3.24)

}
.

Table 3.1: Summary of MILP formulations. All formulations contain variables (z, x, v,y,w, λ) ∈W.
The column SOS2 indicates whether or not the λ variables are SOS2-constrained.

Model Constraints SOS2? Description

PLA (3.5c),(3.17) Yes Approximation of MINLP2
PLA-S (3.17b)-(3.17e),(3.18) Yes Stronger LP relaxation than PLA

PLA-SS (3.17b)-(3.17e),(3.18),(3.19) Yes Stronger LP relaxation than PLA-S
SEC (3.5c),(3.22) No Relaxation of MINLP2

SEC-S (3.18),(3.22b)-(3.22c) No Stronger LP relaxation than SEC
k -SEC (3.5c),(3.22a)-(3.22c),(3.24) Yes Relaxation of MINLP2

k -SEC-SS (3.18),(3.19),(3.22b)-
(3.22c),(3.24) Yes Stronger LP relaxation than k -SEC

Table 3.1 summarizes the MILP formulations that have been introduced in this section.
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Figure 3.5: Comparing 1-SEC and k-SEC formulation (k = 2).
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3.4 Construction of piecewise-linear models

A key feature of our MILP formulations is that, for each period t ∈ T, the functions f(vt) and hp(vt)
are approximated using piecewise-linear functions that share a common set of break points. In this
section, we describe NLP formulations that identify the tightest possible approximation/relaxation
of multiple univariate convex/concave functions with piecewise-linear forms that share the same
set of break points. These formulations are nonconvex, and hence we can only expect to achieve
local optimal solutions. However, our computational experience reported in Section 3.5 indicates
that these formulations are easily solved by a commercial NLP solver, and the solutions are high
quality. Our development of these NLP formulations is motivated by the need to simultaneously
approximate a set of nonlinear functions. However, another benefit of these formulations is that
they are flexible in the sense that it is easy to impose additional requirements on the piecewise-
linear functions produced, such as requiring them to be convex or concave, monotone increasing or
decreasing, etc.

Piecewise-linear approximation

We now describe a method for obtaining piecewise-linear approximations of nonlinear functions,
with the goal to minimize the maximum error of the approximation. In this section, we extend
previous work [17, 38, 48, 83] to propose an NLP formulation that identifies piecewise-linear
approximations of multiple univariate convex/concave functions that share the same domain and
break points.

Given a differentiable concave function f(·), differentiable concave functions hp(·),p ∈ P+, and
differentiable convex functions hp(·),p ∈ P−, all defined on the domain [0, Mv], we seek a common
set of break points B ∈ Rm+1

+ with 0 = B0 < B1 < · · · < Bm = Mv and approximation function
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Figure 3.6: Piecewise (m = 4) linear approximation of a concave function f(·).
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values F ∈ Rm+1 andHp ∈ Rm+1,p ∈ P, in order to minimize the weighted sum of maximum errors
between the given functions and the constructed piecewise-linear approximations:

min
B,F,Hp,p∈P

wfεf +
∑
p∈P

whpε
h
p , (3.25a)

subject to εf > |f(v) − f̄(v;B, F)|, v ∈ [0, Mv] (3.25b)

εhp > |hp(v) − h̄(v;B,Hp)|, v ∈ [0, Mv], p ∈ P (3.25c)

0 = B0 6 B1 6 · · · 6 Bm = Mv (3.25d)

wherewf > 0 andwhp > 0,p ∈ P are fixed weights. We use weightswf = 1/max{|f(v)| : v ∈ [0,Mv]}

and whp = 1/max{|hp(v)| : v ∈ [0,Mv]} ∀p ∈ P to prevent any single function from dominating the
objective function.

To formulate the semi-infinite program (3.25) as an NLP, we reformulate (3.25b) and (3.25c) using
finitely many constraints using ideas from Geoffrion [38]. Consider first the concave function f(·),
and consider an arbitrary interval [Bk−1,Bk]. Note that, on the this interval, the function f̄(·;B, F) is
affine:

f̄(v;B, F) = Fk−1 +

(
Fk − Fk−1

Bk − Bk−1

)
(v− Bk−1).

Because f(·) is concave, the function err+f (v) := f(v) − f̄(v;B, F) is also concave on the interval
[Bk−1,Bk] for fixed B, F, and so the maximum of err+f (v) over this interval is given by err+f (ak),
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where ak is the point at which the derivative of err+f (v) equals zero. The point ak satisfies:

f ′(ak) =
Fk − Fk−1

Bk − Bk−1
⇔ f ′(ak)(Bk − Bk−1) = Fk − Fk−1 (3.26)

since we can assume Bk > Bk−1. See Figure 3.6 for an example of the point ak. Observe that,
using (3.26),

err+f (ak) = f(ak) −
(
Fk−1 +

(
Fk − Fk−1

Bk − Bk−1

)
(ak − Bk−1)

)
= f(ak) − Fk−1 − f

′(ak)(ak − Bk−1).

Thus, εf > err+f (x) for all x ∈ [Bk−1,Bk] if and only if there exists ak ∈ [Bk−1,Bk] that satisfies (3.26)
and

εf + Fk−1 > f(ak) − f
′(ak)(ak − Bk−1).

Consider now err−f (v) := f̄(v;B, F) − f(v). Because f(·) is concave, it holds that

max{err−f (v) : v ∈ [Bk−1,Bk]} = max{err−f (Bk−1), err−f (Bk)}.

Thus, εf > err−f (x) for all x ∈ [Bk−1,Bk] if and only if

εf > err−f (Bi) = Fi − f(Bi), i = k− 1,k.

Putting this all together, we obtain that (3.25b) can be formulated using additional variables ak,k =

1, . . . ,m and the constraints

εf + Fk−1 > f(ak) − f
′(ak)(ak − Bk−1), k = 1, . . . ,m, (3.27a)

εf > Fk − f(Bk), k = 0, 1, . . . ,m, (3.27b)

f ′(ak)(Bk − Bk−1) = Fk − Fk−1, k = 1, . . . ,m, (3.27c)

Bk−1 6 ak 6 Bk, k = 1, . . . ,m. (3.27d)

Identical arguments can be used to formulate constraints (3.25c), using additional variables
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bk,p, k = 1, . . . ,m,p ∈ P and the constraints:

εhp +Hk−1,p > hp(bk,p) − h
′
p(bk,p)(bk,p −Hk−1,p), k = 1, . . . ,m, p ∈ P+, (3.28a)

εhp −Hk−1,p > −hp(bk,p) + h
′
p(bk,p)(bk,p −Hk−1,p), k = 1, . . . ,m, p ∈ P−, (3.28b)

εhp > Hk,p − hp(Bk), k = 0, 1, . . . ,m, p ∈ P+, (3.28c)

εhp > hp(Bk) −Hk,p, k = 0, 1, . . . ,m, p ∈ P−, (3.28d)

h ′p(bk,p)(Bk − Bk−1) = Hk,p −Hk−1,p, k = 1, . . . ,m, p ∈ P, (3.28e)

Bk−1 6 bk,p 6 Bk, k = 1, . . . ,m, p ∈ P, (3.28f)

where the constraints (3.28a) and (3.28c) are analogous to (3.27a) and (3.27b) since the functions
hp, p ∈ P+ are concave, whereas (3.28b) and (3.28d) follow because the functions hp, p ∈ P− are
convex.

We also require that the piecewise-linear functions h̄p(v;B,Hp) be exact at v = 0, and hence we
enforce

H0,p = 0, p ∈ P. (3.29)

We therefore obtain the NLP formulation:

min
B,F,H,a,b

wfεf +
∑
p∈P

whp , (3.30a)

subject to (3.27), (3.28), (3.29),B0 = 0,Bm = Mv. (3.30b)

where the inequalities B0 6 B1 6 · · · 6 Bm are omitted because they are implied by (3.27d). We use
a locally optimal solution obtained by solving this NLP to define the break points B̂ and function
values F̂ and Ĥp,p ∈ P, used in Section 3.3.

Piecewise-linear relaxation

We now describe an NLP formulation that can be used to generate piecewise-linear functions that
provide lower and upper bounds for a set of convex and concave functions, respectively. The key
new feature of our approach is that it simultaneously approximates a set of functions sharing the
same domain using the same set of break points for each function. Our work builds on ideas of
algorithms [17, 83, 94] that find tight piecewise-linear upper and lower approximations of a single
univariate convex function.

We seek piecewise-linear upper bounds on the concave differentiable production functions
f(·), hp(·),p ∈ P+ and lower bounds on the convex differentiable functions hp(·),p ∈ P−. All
these functions share the same domain [0, Mv]. Observe that f(·) and hp(·) are non-negative over
[0, Mv]. The goal of the NLP formulation we propose is to minimize a weighted sum of the areas
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between the curves of the functions being approximated and their corresponding piecewise-linear
approximations.

The primary variables in the formulation are the break points B ∈ Rm+1, and function values
F ∈ Rm+1 and Hp ∈ Rm+1,p ∈ P. The domain [0, Mv] is divided into m intervals, [Bk−1,Bk],
k = 1, . . . ,m, and the constructed piecewise-linear functions are linear on each interval, defined
according to (3.14) and (3.15). On each interval, for each function being relaxed we require there
be a point in the interval such that the piecewise-linear function is tangent to the function being
approximated at that point. For the function f(·), we introduce variables ak, k = 1, . . . ,m, to identify
these points, and for the functions hp(·),p ∈ P, we introduce variables bk,p, k = 1, . . . ,m to identify
these points. Figure 3.7 highlights the notation used in this section and depicts a possible four-piece
relaxation of a single function f(·).

Figure 3.7: Piecewise-linear (m = 4) relaxation of a concave function f(·).
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For each interval k = 1, . . . ,m, the piecewise-linear approximation of f(·) in that interval is
defined by the affine function `k(v) = f(ak)+f ′(ak)(v−ak) obtained as the first-order approximation
of f(·) at the point ak. As f(·) is concave on [0, Mv], it follows that `k(v) > f(v) on [0, Mv]. The break
points, Bk, and function values Fk, k ∈M, are then determined uniquely by finding the intersection
of consecutive affine functions `k(v) and `k+1(v), as illustrated in Figure 3.7. Specifically, for
1 6 k 6 m, since Fk represents the value of the piecewise linear function at the point Bk, we must
have Fk = `k(Bk), and for 0 6 k < m, we must also have Fk = `k+1(Bk), i.e.,

Fk =f(ak) + f
′(ak)(Bk − ak), k = 1, . . . ,m, (3.31a)

Fk =f(ak+1) + f
′(ak+1)(Bk − ak+1), k = 0, . . . ,m− 1. (3.31b)
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We write similar constraints for the functions hp(·):

Hp,k =hp(bk,p) + h
′
p(Bk)(Bk − bk,p), p ∈ P,k = 1, . . . ,m, (3.31c)

Hp,k =hp(bk+1,p) + h
′
p(Bk+1)(Bk − bk+1,p), p ∈ P,k = 0, . . . ,m− 1. (3.31d)

We measure the quality of the relaxation using the area between the two curves defined by
the piecewise-linear approximation function and the corresponding function being relaxed. We
combine the measures for the different functions into a single objective function using weights
wf for f(·) and whp for each function hp(·),p ∈ P. We use weights of wf = 1/

∫Mv

0 f(s)ds and
whp = 1/

∫Mv

0 hp(s)ds for our experiments. We therefore obtain the following NLP formulation:

min
B,F,H,a,b

wf
[1

2
∑
k∈M

(Fk + Fk−1)(Bk − Bk−1) −

∫Mv

0
f(s)ds

]
(3.32a)

+
∑
p∈P+

whp

[1
2
∑
k∈M

(Hp,k +Hp,k−1)(Bk − Bk−1) −

∫Mv

0
hp(s)ds

]

+
∑
p∈P−

whp

[ ∫Mv

0
hp(s)ds− 1

2
∑
k∈M

(Hp,k +Hp,k−1)(Bk − Bk−1)
]

subject to (3.31), (3.29)

Bk−1 6 ak 6 Bk, k = 1, . . . ,m (3.32b)

Bk−1 6 bk,p 6 Bk, k = 1, . . . ,m,p ∈ P (3.32c)

B0 = 0, Bm = Mv, (3.32d)

where we again include the constraints (3.29) which enforce that h̄p(0;B,Hp) = 0, p ∈ P. The
first term in the objective calculates the difference between the area under the piecewise-linear
approximation of f(·), calculated by summing the area under each piece, and the area under the
curve defined by f(·), calculated with the integral

∫Mv

0 f(s)ds. Similar calculations are done for the

by-product functions hp(·), p ∈ P. Since the definite integrals
∫Mv

0 f(s)ds and
∫Mv

0 hp(s)ds are
constants, they can be eliminated from the objective in (3.32). We use a locally optimal solution
obtained from solving this NLP to define the break points B̄ and functions values F̄ and H̄p,p ∈ P

used in the SEC and k -SEC models in Section 3.3.
For the k-SEC model, we also require functions values H̃p,p ∈ P that satisfy (3.23). Having

obtained the break points B̄ from the NLP (3.32), we simply set

H̃p,k = h(Bp,k), k = 0, 1, . . . ,m,p ∈ P.
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Then, for p ∈ P+, h̄(v; B̄, H̃p) 6 hp(v) for v ∈ [0, Mv] by concavity of hp(·), and similarly for p ∈ P−,
h̄(v; B̄, H̃p) > hp(v) for v ∈ [0, Mv] by convexity of hp(·), and so (3.23) is satisfied.

3.5 Computational Results

We conducted numerical experiments to test the effectiveness of formulation MINLP2, the piecewise-
linear approximation and relaxation MILP problems, and our NLP formulations for obtaining the
piecewise-linear approximations and relaxations. The goals of these experiments are to: (1) compare
the accuracy of formulations MINLP1 and MINLP2, (2) compare the computational effort of solving
MINLP1 using a state of the art global optimization solver and approximations of MINLP2 using
the three MILP formulations PLA, SEC, k -SEC, and (3) measure the quality of the piecewise-linear
function approximations and relaxations produced by formulations (3.30) and (3.32), respectively.

We used Gurobi 4.5.1 to solve all MILPs, Conopt 3.14 to solve all non-linear programs to local
optimality except formulations (3.30) and (3.32) for which we used Knitro 7.0.0 to exploit the
multistart feature. We used BARON 9.3.1 to solve all MINLPs to global optimality. We used the
default options for all solvers except that the LP method of Gurobi was changed to the barrier
algorithm for better performance and the NLP solver of BARON was changed to Conopt 3.14 (from
MINOS) to avoid some observed numerical issues. Section 3.5 describes the multistart options set
for Knitro 7.0.0. We ran all instances with a maximum time limit of 1 hour, relative optimality gap
of 0.1% and feasibility tolerance of 10−5. We ran all experiments with a single thread on a 2.30GHz
Intel E5-2470 Xeon processor with 128GB RAM.

Sample Application

We conducted our numerical experiments on a multi-period production and distribution planning
problem. In this problem, the production facilities (I) produce a mixture of products (P), of which
the useful products P+ are supplied to match the demand of customers (J). The manufacturing
process also produces byproducts (P−) which are not sent to customers, but do incur a processing
cost. The development of each facility i ∈ I over the planning horizon (T) involves deciding when
to open the facility and how much of the product mixture to produce over time. We let djpt denote
the known demand for product p ∈ P+, at time period t ∈ T for each customer j ∈ J.

Opening a facility i ∈ I at time period t ∈ T incurs a fixed cost αit. Each unit of product p ∈ P

processed at facility i ∈ I in time period t ∈ T incurs a processing cost of βipt. The cost of shipping
a unit of product p ∈ P+ from facility i ∈ I to customer j ∈ J during time period t ∈ T is γijpt, and
δjpt represents the per unit penalty cost of unsatisfied demand of product p ∈ P+ for customer
j ∈ J.

Each facility i ∈ I operates according to the production process described in the introduction.
Thus, in the discrete-time formulation of this problem, for each facility i ∈ I, we have decision



57

variables xit and vit, which represent the total mixture production during time period t ∈ T and
cumulative mixture production up to and including time period t ∈ T, respectively. The binary
decision variables zit, t ∈ T determine the time when each facility i ∈ I is opened (if at all), and
the variables yipt represent the amount of each product p ∈ P = P+ ∪ P− produced during time
period t ∈ T at facility i ∈ I.

The facilities are linked by the need to supply demand to the common set of customers j ∈ J.
Let qijpt define a decision variable that represents the amount of product p ∈ P+ transported from
production facility i ∈ I to customer j ∈ J during time period t ∈ T, and let ujpt be a decision
variable representing the unsatisfied demand of product p ∈ P+ for customer j ∈ J during time
period t ∈ T. Then, the multi-period production and distribution problem is:

min
∑
i∈I

(∑
i∈I

αitzit +
∑
i∈I

∑
p∈P

βiptyipt+
∑
i∈I

∑
j∈J

∑
p∈P

γijptqijpt +
∑
j∈J

∑
p∈P

δjptujpt
)

subject to
∑
j∈J

qijpt = yi,p,t i ∈ I,p ∈ P+, t ∈ T

∑
i∈I

qijpt = djpt − ujpt, j ∈ J,p ∈ P+, t ∈ T (PP-X)

(zi, xi, vi,yi) ∈ Xi, i ∈ I

ujpt > 0, j ∈ J,p ∈ P+, t ∈ T

Here Xi denotes the set of constraints defining the production process for each facility i ∈ I. One
can model the production set in this production and distribution problem using either MINLP1
or MINLP2, which results in two different problems denoted by PP-MINLP1 and PP-MINLP2,
respectively.

Test Instances

We report tests conducted on randomly generated instances of the sample application problem. All
aspects of the dataset, including customer demands and unit costs, the production functions fi(·)
and the product production ratio function gi,p(·) for each facility i ∈ I were generated randomly.
Figure 3.8 illustrates some sample production functions that were used in our instances. We solved
instances categorized by the number of binary variables. We grouped instances as small (< 150
binary variables), and large (>200 binary variables). We measured formulation accuracy on small
instances and computational impact on large instances.
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Figure 3.8: Sample production functions used for numerical experiments.

Total production (vt)

Maximum production rate (f)

Total production (vt)

Useful product fraction (gp+ )

Total production (vt)

By-product fraction (gp− )

Table 3.2: Solution statistics for formulation MINLP1 on 12 small instances.

MINLP1 ∆yipt Gap to Best
|I| |T| |P| Gap Max Avg MINLP2 Obj
5 5 2 17.5 3.75 0.85 29.9
5 5 2 13.8 2.64 0.60 27.4
5 5 2 15.7 3.02 0.71 24.8
5 10 2 24.5 2.43 0.44 19.0
5 10 2 20.6 2.22 0.54 19.3
5 10 2 27.1 2.37 0.45 17.3

10 10 2 35.1 3.29 0.59 19.4
10 10 2 32.6 2.98 0.55 15.6
10 10 2 35.1 2.27 0.55 17.7
10 15 2 34.8 2.62 0.44 13.5
10 15 2 33.6 2.53 0.45 12.6
10 15 2 35.5 2.40 0.38 11.3

Dataset Generation

We now discuss the procedure used to generate the datasets for the sample applicaiton problem
(PP-X).

Production functions We normalized the range of the total production function so that the cu-
mulative production variable v has takes values in [0, 1]. We used bounded, concave production
functions of the form f(x) = r0 + r1x+ r2x

2 with r2 < 0. We randomly generated f(·) by choosing
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r0 ∼ U(15, 25), r2 ∼ U(−50, 0) and r0 + r1 + r2 ∼ U(−15, 0). This procedure was repeated to generate
independently and identically distributed samples of production functions fi(·) for each facility
i ∈ I. The family of functions generated by this procedure always ensures that f(·) is concave.

For each product p ∈ P, we must generate either a monotonically increasing or decreasing
function. Additionally, we must ensure that

∑
p∈P gp(v) = 1,∀v ∈ [0, 1]. We simulated such

functions by scaling and translating a randomly generated function from a family of functions. One
such family of monotonically increasing functions is ĝ(v) =

∫v
0 u

k(1 − u)kdu/
∫1

0 u
k(1 − u)kdu,k =

{1, 2, 3}. We chose this family of functions because (a) it was rich enough to express productions
functions of different kinds, (b) these functions are monotonically increasing, and (c) these functions
satisfy ĝ(0) = 0 and ĝ(1) = 1. We then obtain functions gp(v),p ∈ P by choosing positive real
numbers ap and bp for p ∈ P and then setting

gp(v) = ap + (bp − ap)ĝ(v) ∀p ∈ P.

Since the family of generated functions must satisfy
∑
p∈P gp(v) = 1,∀v ∈ [0, 1], we require∑

p∈P+

ap +
∑
p∈P−

ap = 1 (3.33a)

∑
p∈P+

bp +
∑
p∈P−

bp = 1 (3.33b)

where ap = gp(0) and bp = gp(1). Additionally, we must also ensure that

ap > bp ∀p ∈ P+ (3.33c)

ap < bp ∀p ∈ P− (3.33d)

which makes the useful product ratio functions decreasing and the byproduct ratio function in-
creasing. The following sampling procedure generates product ratio functions which satisfy all the
required conditions.

• We sampled âp ∼ U(0.8, 1),∀p ∈ P+ and âp ∼ U(0, 0.2),∀p ∈ P−.

• We normalized the above samples so that ap =
âp∑
p∈P âp

,∀p ∈ P which ensures that condition
(3.33a) is satisfied.

• Next, we sampled b̂p ∼ U(0, ap2 ) ∀p ∈ P+ and b̂p ∼ U(2ap, 1) ∀p ∈ P− which ensures that
conditions (3.33c) and (3.33d) are satisfied.

• We normalized the above samples so that bp =
b̂p∑
p∈P b̂p

,∀p ∈ P which ensures that condition
(3.33b) is satisfied.
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Customer Demands We generated increasing demand profiles as follows. For each customer
j ∈ J and product p ∈ P, we randomly generated a demand time frame uniformly from start-time
between [1, T3 ] and end-time between [ 2T

3 , T ]. We generated demands {djpt} ∼ U(0.8, 1.2) for each
time period within the demand time frame, sorted them in increasing order and scaled them by∑
i∈I
∑
p∈P+ hip(1)
3|J| . Here, hi,p(1) is the cumulative production of each useful product p ∈ P+ from a

facility i ∈ I. The scaling ensures that the total demand across all customers is roughly a third of
the total possible production of useful products over all facilities.

Costs We used the following procedure to generate the four different types of costs incurred at
each facility. This procedure ensured that at the end of the planning horizon, the total facility
opening cost is of the same order as the sum of operating, production and penalty costs. For each
customer j ∈ J, facility i ∈ I and product p ∈ P during the first time period, we generated operating
costs βi,p,1 ∼ U(0.8, 1.2), transportation costs γijp1 ∼ U(0.8, 1.2), penalty costs δj,p,1 ∼ U(16, 24) and
fixed costs αi1 ∼

∑
p∈P+ hip(1)

3|J| U(0.8, 1.2). We discounted costs at 5% for subsequent time periods.

Inaccuracy and Computational Difficulty of MINLP1

We first demonstrate the disadvantages of the formulation based on MINLP1, in terms of the
difficulty in solving the problem, and the inaccuracy of the resulting solution. This experiment is
performed on relatively small instances (< 150 binary variables) of our sample application problem.

First, to analyze the computational difficulty of solving these small instances, we use BARON
to attempt to solve PP-MINLP1, with a ten hour time limit. None of these instances are solved to
optimality, and so we obtain the ending optimality gap, which is defined as (UB− LB)/UB, where
UB and LB are the best upper and lower bounds, respectively, obtained by BARON in the time limit.
Table 3.2 displays statistics about these values for twelve small test instances. Each row in this table
corresponds to a different instance, and the first two columns describe the size of the instance in
terms of the number of facilities |I| and the number of time periods |T|. The column ‘MINLP1 Gap’
provides the ending optimality gaps of these instances. These large remaining gaps indicate that
it is not possible to obtain provably near-optimal solutions of MINLP1 using the general-purpose
global optimization solver like BARON.

We next study the quality of the solutions obtained using MINLP1. This is somewhat challenging
because MINLP1 and MINLP2 represent two different approximations of the underlying problem. In
particular, MINLP1 is based on the assumption that the fraction of products produced during period
t is equal to hp(vt−1) throughout the period. Since hp(v) is increasing in v for by-products and
decreasing in v for desirable products, this assumption is optimistic, and leads to an over-estimation
of the actual obtainable objective value. In contrast, MINLP2 is based on an exact calculation of the
amount of each product p produced during each period, so the objective value in MINLP2 is a more
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accurate representation of the actual cost. Because of this difference, we cannot simply compare the
objective value of a solution obtained form MINLP1 to a solution obtained using MINLP2.

To overcome this challenge, we first obtain a solution to PP-MINLP1, say (z1, x1, v1,y1,q1,u1),
and then repair the solution to obtain a feasible solution to the more accurate formulation PP-
MINLP2. The solution (z1, x1, v1,y1,q1,u1) is taken as the best feasible solution to PP-MINLP1
found by BARON within the time limit. To repair the solution, for each facility i, we fix the decision
variables z1

i, x1
i, v1

i, and then use the equations (3.12) to exactly calculate the amount of each product
p ∈ P produced in each period t ∈ T, given that x1

it units of the mixture are produced, and denote
this amount by y2

i,p,t. Then, with these values all fixed, we solve (PP-X), which then amounts to a
transportation problem that determines how much of each product to ship from each facility to
each customer in all time periods to minimize the transportation costs and penalty costs of unmet
demand. This leads to a feasible solution to the more accurate formulation PP-MINLP2.

One measure of the inaccuracy of the formulation MINLP1 is the difference between the values
y1
ipt obtained directly from solving PP-MINLP2, to the repaired values y2

ipt, which we denote by
∆yipt = |y1

ipt − y
2
ipt|. The columns under the heading ∆yipt in Table 3.2 display the maximum

and average of ∆yipt over all facilities, products, and time periods. For comparison purposes, the
average and maximum value of the yi,p,t variables (over the solutions obtained in all instances) is
3.43 and 24.6, respectively. The average errors range between 0.38 and 0.85, and the maximum error
ranges between 2.22 and 3.75. Thus, the estimates of the product quantities used in formulation
MINLP1 are significantly different (at least 10% on average) from the actual.

In the last column of Table 3.2, we give the percentage difference between the cost of the repaired
solution to the cost of the best known feasible solution to PP-MINLP2, obtained using methods that
directly use the formulation MINLP2, as described in the following sections. Here the percentage
gap is calculated as (A− B)/Awhere A is the cost of the repaired solution and B is the cost of the
best known solution. Thus, we see that the best known solutions to PP-MINLP2 are between 11.3%
and 29.9% less costly than the repaired solution obtained from solving PP-MINLP1.

Finally, we observe that the gap between the formulation MINLP2 and MINLP1 reduces as the
number of time periods (|T|) increases, which is expected as the approximation error of formulatioin
MINLP2 decreases as the period length decreases.

The effect of formulation strengthening on the MILP formulations

In our next experiment, we study the effect of using equations (3.18) and (3.19) to strengthen
each of the three MILP formulations PLA-SS, SEC-S, and k -SEC-SS, compared to the formulations
PLA, SEC,and k -SEC, which do not use these. These tests are conducted on 36 large instances of
PP-MINLP2. These instances have between 15-20 facilities, 15-25 time periods, and 2-6 products,
resulting in instances with 200-500 binary variables for all formulations and 200-500 SOS2 sets of
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Figure 3.9: Effect of formulation strengthening on terminal MILP optimality gaps (%) of the three
MILP formulations.
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variables for the PLA and k -SEC formulations. The piecewise-linear functions used in these MILP
approximation all have three line segments that were constructed using the formulations in section
3.4 (see section 3.5 for implementation details). For each of these instances, we solved the MILP
formulations with and without strengthening with a time limit of one hour. We then found the
ending optimality gap of the MILP instance, calculated as (UB− LB)/UB, where UB and LB are the
best upper and lower bounds, respectively, obtained for the MILP formulation within the time limit.
Figure 3.9 displays scatter plots of the resulting optimality gaps for the MILP formulations with
and without strengthening. When using PLA-SS, SEC-S k -SEC-SS, most instances have ending
optimality gap less than 2%. In comparison, when using PLA, SEC, k -SEC most instances have
optimality gaps in the range of 2%-7%. Thus, it is clear that strengthening significantly helps the
PLA, SEC as well as k -SEC models.

We can further analyze the improvements obtained from using the strengthened formulations
by comparing the quality of the linear programming (LP) relaxations. For an MILP instance, the
LP relaxation gap is calculated as (ẑ− zLP)/ẑ, where zLP is the LP relaxation objective value of the
given instance, and ẑ is the value of the best known feasible solution (found using any formulation
for that instance). The LP relaxation gaps using the strengthened and unstrengthened versions
of the three MILP formulations are summarized in Table 3.3. Each row in this table corresponds
to an average across three different instances with the same size of |I|, |T| and |P|. The final row
provides an average over all 36 instances. We observed more than a ten-fold improvement in the
LP relaxation gaps across all three MILP formulation due to equations (3.18) and (3.19). In our
remaining experiments, we use only the strengthened versions of the MILP formulations.
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Table 3.3: Average linear programming relaxation gaps for MILP formulations of MINLP2 with and
without strengthening while solving 36 large instances of PP.

|I| |T| |P| PLA PLA-SS SEC SEC-S k -SEC k -SEC-SS
15 15 2 20.97 1.38 21.07 1.47 21.10 1.47
15 15 4 21.17 1.59 21.23 1.62 21.37 1.67
15 15 6 22.73 1.64 23.10 1.74 23.13 1.91
20 15 2 21.33 1.28 21.30 1.32 21.30 1.33
20 15 4 22.30 1.46 22.47 1.46 22.57 1.53
20 15 6 22.50 1.51 22.80 1.59 22.70 1.78
20 20 2 21.93 1.68 22.07 1.75 22.17 1.77
20 20 4 21.57 2.11 21.87 2.20 22.20 2.36
20 20 6 23.07 2.23 23.57 2.43 23.80 2.50
20 25 2 21.43 2.39 21.70 2.53 21.73 2.53
20 25 4 21.47 2.37 21.70 2.47 22.03 2.60
20 25 6 22.53 2.56 23.07 2.81 23.37 3.06

Arithmetic mean 21.92 1.85 22.16 1.95 22.29 2.04

Comparing the MILP approximations and relaxations of MINLP2

We next compare the performance of the different piecewise-linear approximations and relaxations
that we proposed in Section 3.3 for obtaining lower bounds and feasible solutions to PP-MINLP2.
These tests are conducted on the same 36 large instances of PP-MINLP2 used in Section 3.5.

We used the MILP approximations and relaxations to obtain feasible solutions to PP-MINLP2
as follows. First, we solve each of the MILP problems PLA-SS, SEC-S, and k -SEC-SS with a one-
hour time limit. Then, for each formulation, we take the best feasible MILP solution found, fix
all the binary decision variables {zit t ∈ T} for all facilities i ∈ I, and then solve the resulting
nonlinear program (NLP) using Conopt 3.14. This returns a feasible solution to PP-MINLP2, and
hence provides an upper bound on the optimal objective value. The overall best upper bound for
PP-MINLP2 is the minimum of the objective values of each of the feasible solutions found. The
formulations SEC and k -SEC are relaxations of MINLP2. We solve these MILP relaxations with
a time limit of one hour, and the lower bound on the MILP instance after that time limit is then
a lower bound on the optimal objective value of problem PP-MINLP2. For each test instance, the
larger of these two lower bounds is the best lower bound we obtain.

Figure 3.10 and Table 3.4 summarize the results of these experiments. We separately analyze the
performance of these formulations in terms of quality of the lower bounds and the feasible solutions
(upper bounds). Only SEC and k -SEC are guaranteed to provide lower bounds for PP-MINLP2. To
compare the quality of these lower bounds, for each instance and each formulation we compute
the gap between the lower bound obtained from the formulation and the best feasible solution to
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Figure 3.10: Evaluating formulations PLA-SS, SEC-S, k -SEC-SS on large instances PP-MINLP2.
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PP-MINLP2 for that instance (found by any method using the procedure described in section 3.5).
Figure 3.10(a) plots the cumulative distribution function of this gap over the 36 test instances for
SEC and k -SEC, and the second and third columns of Table 3.4 provide summary statistics. Again,
each row refers to an average over 3 instances of the same size. First, we observe that in both cases,
the bounds provided are reasonably small, between 1.81% and 2.11% on average, and less than 4% in
all instances. Second, we observe that the bounds provided from formulation SEC are slightly better
than those obtained from k -SEC, SEC yields average gaps of 1.81% compared to 2.11% from k -SEC.
This result is somewhat counterintuitive, because the feasible region of the k -SEC formulation is
a subset of the feasible region of the SEC formulation, so that if both of these formulations were
solved to optimality, k -SEC must provide a bound at least as good as SEC. However, these MILP
instances are not solved to optimality within the time limit, and so the bounds obtained are the best
lower bounds on the respective MILP instances within the time limit. Because k -SEC contains SOS2
variables, these instances are more difficult to solve, and hence have a larger MILP optimality gap
after the time limit, which translates to a worse bound on the original problem PP-MINLP2.

For each instance and each MILP formulation we also compute the gap between the feasible
solution of PP-MINLP2 found by that formulation to the largest lower bound of PP-MINLP2 ob-
tained for that instance. Figure 3.10(b) plots the cumulative distribution function of this gap over
the 36 test instances for SEC and k -SEC, and the last three columns of Table 3.4 provide averages
over three instances with the same size. We observe that all formulations provide good solutions
for all of the test instances: each formulation provided a solution within 4% of the best known lower
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Table 3.4: Summary statistics for MILP approximations and relaxations of MINLP2 while solving
36 large instances of PP-MINLP2.

Average gap to best feasible
solution of PP-MINLP2 (%)

Average gap to best bound of
PP-MINLP2 (%)

|I| |T| |P| SEC-S k -SEC-SS PLA-SS SEC-S k -SEC-SS
15 15 2 1.02 1.01 1.03 1.00 1.09
15 15 4 1.01 1.32 1.06 1.10 1.14
15 15 6 1.81 2.58 1.85 1.83 1.98
15 20 2 1.16 1.14 1.16 1.16 1.21
15 20 4 1.34 1.59 1.36 1.38 1.44
15 20 6 2.02 2.78 2.03 2.06 2.23
20 20 2 1.47 1.42 1.45 1.45 1.58
20 20 4 1.91 2.33 1.91 1.98 2.07
20 20 6 2.58 2.88 2.62 2.60 2.94
25 20 2 1.98 2.00 2.00 2.04 2.15
25 20 4 2.17 2.54 2.17 2.38 2.41
25 20 6 3.27 3.76 3.27 3.55 3.61

Arithmetic mean 1.81 2.11 1.83 1.88 1.99

bound on all of the instances. However, we observed that formulation PLA-SS is marginally better
than SEC-S and k -SEC.

In summary, for these test instances, the SEC-S formulation appears to be preferable to the
k -SEC-SS formulation in terms of both the quality of the lower bound obtained within a time
limit, and the quality of the feasible solutions obtained. The SEC-S and PLA-SS formulation are
complementary: PLA-SS can be used to consistently obtain high quality feasible solutions, whereas
SEC-S can be used to provide a lower bound to evaluate the quality of this solution.

Evaluating approximations of nonlinear functions

In our final experiment, we study the quality of the piecewise-linear approximations and relaxations
obtained using the formulations (3.30) and (3.32), respectively. Because these NLPs are nonconvex,
we used a multi-start strategy with 100 randomly generated starting solutions to obtain different
local optimal solutions. Each NLP is solved to local optimality using Knitro 7.0.0 with an iteration
limit of 1000 and of the solutions generated we choose the solution with the best objective value.
The starting points were randomly generated between the natural upper and lower bounds of all
bounded variables. Starting points for unbounded variables were set to 0 by default by setting the
parameter (maxbndrange=0). We conducted numerical experiments on 765 sets of functions which
were generated as described in Section 3.5. Each set of functions contained a single production rate
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function f(·) and between two and six cumulative product production functions hp(·), leading to a
total of 3645 functions. We calculate piecewise-linear approximations and relaxations consisting of
three line segments. The average CPU time for solving all a 100 NLP problems (3.32) and (3.30) for
a given set of functions was in the order of a few seconds.

We first evaluate the quality of the piecewise-linear approximations produced by formula-
tion (3.30). For a given piecewise-linear approximation f̂ of a nonnegative function f, both with
domain [0, Mv], we measure the accuracy of the approximation by calculating the relative function eval-
uation error (RFE), evaluated as max{|f̂(v) − f(v)| : v ∈ [0, Mv]}/f̄, where f̄ = max{f(v) : v ∈ [0, Mv]}.
For each of the 765 sets of functions, we calculated three different sets of piecewise-linear approxi-
mations of these functions, and evaluated the RFE value of each approximation of each function
in the set. First, we used uniformly spaced breakpoints in the interval [0, Mv], and then optimized
the function values F̂ or Ĥp to minimize the error with these break points fixed. This strategy can
be seen as a naive method for achieving a set of piecewise linear approximations that share the
same set of break points. Next, for each set of functions we used the NLP formulation (3.30). Finally,
for each individual function, we used an adaptation of formulation (3.30) in which only this single
function is approximated. This method yields break points that are different for the functions in a
set, and hence does not satisfy our goal of using the same set of break points. However, it provides
an estimate of the best possible piecewise-linear approximation that could be obtained for each
function, if the requirement to share break points were removed. Table 3.5 presents the average,
geometric mean, and maximum of the RFE over all these function approximations, taken over all
sets and all functions in each set. We observe that using (3.30) yields approximations that are better
than using uniform break points (0.96% average RFE compared to 1.21% average RFE). We also
observe that the approximations using (3.30) are not much worse than the approximations using
separate break points. Thus, we conclude that the loss in accuracy induced by the requirement to
share break points across functions within a set is not that significant when using (3.30).

Table 3.5: Average cccuracy of three-segment linear approximations of nonlinear functions on 765
sets of functions (3645 functions total).

Relative function evaluation error (%)
|P| # Instances Separate break points (3.30) Uniform break points
2 315 0.78 1.01 1.16
4 225 0.73 0.94 1.21
6 225 0.72 0.91 1.28
Arithmetic mean 0.75 0.96 1.21
Geometric mean 0.74 0.95 1.20

Maximum 1.22 1.53 1.62
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Table 3.6: Average accuracy of three-segment linear relaxations of nonlinear functions on 765 sets of
functions (3645 functions total).

Relative area difference (%)
|P| # Instances Separate break points (3.32)
2 315 1.03 1.10
4 225 1.07 1.11
6 225 1.10 1.14
Arithmetic mean 1.06 1.11
Geometric mean 1.05 1.11

Maximum 1.41 1.43

We next evaluate the quality of the piecewise-linear relaxations produced by formulation (3.32).
For a given piecewise-linear relaxation f̂ of a function f, both with domain [0, Mv], we measure the
accuracy of the relaxation by calculating the relative area difference (RAD), evaluated as |Af −Af̂|/Af,
where Af =

∫Mv

0 f(v)dv and similarly for Af̂. For each set of functions, we obtain two sets of
piecewise-linear relaxations. The first set is obtained using (3.32), and the second set is also obtained
using (3.32), except that in this case we solve (3.32) separately for each function, allowing the break
points to be different for different functions within a set. Table 3.6 provides the average, geometric
mean, and maximum RAD for these two methods over the 765 sets of functions. Once again, we
observe that when using (3.32), the requirement that the break points be shared across functions
within a set only slightly decreases the quality of the relaxation.

3.6 Concluding remarks

In this chapter, a production planning problem was described with a special structure that the
production process creates a mixture of desirable products and undesirable byproducts. A distin-
guishing feature of this nonconvex MINLP problem is that the fraction of undesirable byproducts
increases monotonically as a function of the total mixture production up to that point in time.
We present a continuous-time formulation and two discrete-time approximations (MINLP1 and
MINLP2) of this problem. A MILP-based approximation (PLA) and two MILP-based relaxations
(1-SEC, k-SEC) of this formulation were presented, and modifications to these formulations to
improve the linear programming relaxations were derived.

Numerical experiments on small instances demonstrated our proposed formulation MINLP2
yielded solutions up to 30% less costly than those obtained by the natural formulation MINLP1.
We found that the strengthening of the MILP formulations had a significant positive impact on
the ability of a commercial MILP solver to obtain near-optimal solutions. We demonstrated that,
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in contrast to the formulation based on MINLP1, using the MILP formulations we were able to
obtain good quality feasible solutions, along with lower bounds that verify that these solutions are
near-optimal for this nonconvex MINLP problem. Finally, we found that by using our proposed NLP
formulations for obtaining piecewise-linear relaxations and approximations for sets of functions,
it is possible to enforce that these piecewise-linear functions share the same set of break points
without significantly sacrificing the quality of the approximations.
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4 models and solution techniques for production planning problems with
complex fiscal terms

In strategic planning problems, the modelling of realistic fiscal contracts & business rules like
taxes, tariffs and royalties can greatly impact decision making. Optimization models for such
strategic planning problems commonly ignore these business rules and instead use simple linear
objective functions like net present value (NPV). In this paper, we develop optimization models,
solution techniques, and algorithms for production planning problems in the presence of production
sharing contracts (PSC); a type of fiscal contract in which the tax incurred by a contractor is a
piecewise-constant function of the internal rate-of-return (IRR). We propose two different solution
techniques. The first is a mixed-integer programming (MIP) formulation and the second is a search
algorithm based on a novel continuous domain linear programming (LP) formulation. We then
propose decomposition methods to compute bounds on the optimal solution. Our computational
experiments demonstrate the impact of our formulations, solution techniques, and algorithms on a
synthetic (but realistic) application.

4.1 Introduction

There has been an increasing use of sophisticated optimization models to assist large engineering
development projects during their design and planning phase. In applications such as hydrocarbon
field infrastructure planning [49, 98, 44, 58, 22], portfolio optimization [77] and production plan-
ning [2, 86], decision making during the project planning phase is greatly influenced by business
rules like taxes, royalties, tariffs, and other such fiscal considerations. It is challenging to formulate
and solve optimization problems that can accurately model these realistic business rules as well as
the complex processes that drive the operational decisions. One approach [42, 49, 93] is to retain the
complexity in the modeling of operational decisions while simplifying the fiscal models. However,
simplified fiscal models may produce substantially worse decisions, in terms of both investment
and operations [2, 44, 55]. Since large projects may involve multi-billion dollar capital investments,
there is a need to develop new models and computational methods that allow decision-makers to
incorporate sufficient detail in both operational and fiscal aspects of strategic planning problems.
In this paper, we consider production sharing contracts (PSC), a fiscal contract commonly used
between governments and mineral development industries [28]. PSCs are fiscal legislations in which
the government allocates to a contractor a fixed share of its revenue based on “trigger points” like
cumulative profits, ratio of profits to costs (called R-factor) or internal rate of return (IRR). A survey
by Deutsche Bank [28] describes a variety of the PSCs implemented in different countries. In this
paper, we focus on IRR-based PSCs but our ideas can be extended to PSCs with other types of trigger
points.
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IRR-based PSCs. Consider an operational planning problem with decisions spanning a horizon
of finite time periods T := {1, 2, . . . T } associated with a series of cash flows f1, f2, . . . fT . The net
present value (NPV) at the end of time period t ∈ T can be computed using

h(q̂, f[1,t]) =

t∑
s=1

fs

(1 + q̂)s
(4.1)

where f[1,t] = (f1, f2, . . . , ft) is the vector of cash flows for all time periods s = 1, 2, . . . , t and
q̂ ∈ (−1,∞) is a discounting rate. At the end of time period t ∈ T, an internal rate of return (IRR)
from the cash flows f[1,t] is a discounting rate qt that satisfies

h(qt, f[1,t]) = 0. (4.2)

(Note that qt does not exist if all cash flows in f[1,t] have the same sign.) In an IRR-based PSC, the
fraction of revenue retained by the contractor, during time period t ∈ T, is a piecewise-constant
function of qt−1 evaluated by dividing the range of possible values of qt−1 into a set of discrete
and disjoint set of K buckets called profit tranches. Typically, a PSC allocates a higher share of the
revenue to the contractor during time period t ∈ T when qt−1 is lower because a lower value of
qt−1 corresponds to a stage in the project when investments are less profitable. An important aspect
of PSCs that we address in this paper is the presence of administrative blocks (see Figure 4.1). These
administrative blocks, also known as “markets” or “ring fences,” are entities in the project whose
fiscal calculations are grouped together to be completely independent any of the other markets.
Section 4.2 provides additional details on IRR-based PSCs.

There are many challenges in developing tractable optimization models for problems involving
IRR-based PSCs. The main challenge is to tackle the nonlinearity involved in computing an IRR
using (4.2). We show, in Section 4.2, that under reasonable assumptions, this nonlinearity can
be eliminated, resulting in a natural MIP formulation for IRR-based PSCs. However, such a MIP
formulation has a weak LP-relaxation because it requires variable bounds (or “big-Ms”) that are
difficult to estimate. Furthermore, this MIP formulation becomes much more difficult to solve as the
number of markets increases. This is because the key decision variables are those that determine
which one of the K possible tranches is associated with each market during each time period. With
a single market, the number of possible combinations of such tranche associations is small enough
to be completely enumerated. But this number grows exponentially with the number of markets.
The combination of the weak LP-relaxation and the combinatorial explosion makes it hard for
branch-and-bound algorithms to explore the solution space of the MIP formulation efficiently.

Related Work. In the past, many authors [98, 44, 58, 22] have used a wide range of modelling
techniques including MIP and mixed-integer nonlinear programming (MINLP) to incorporate
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Facility 1 Facility 2

Market 1 Market 2

Market 3

Customers

Figure 4.1: A production set with 2 shared facilities and 9 customers distributed between 3 markets.

realistic fiscal considerations for strategic planning problems. Of these works, we identify two that
are most related to this paper. Van den Heever et al. [98] propose an MINLP model for production
planning problems with PSCs. However, they do not consider the modelling of markets which,
we argue, is the key challenge in the modelling of PSCs. Additionally, they only consider PSCs
where the contractual trigger points are linear functions (e.g. total production) of the operating
decision variables. Gupta and Grossmann [44] propose a series of MIP and MINLP formulations
and approximations for planning problems involving PSCs. Again, this approach does not easily
extend to IRR-based PSCs, in which the trigger points are nonlinear functions of cash flows. The
solution techniques proposed in this work are significantly different from any previous work in the
literature [98, 44, 58, 22].

Contributions. We highlight three main contributions of this work. First, we propose two formu-
lations for IRR-based PSCs. In Section 4.3, we present a MIP formulation which, under a realistic
assumption, eliminates the nonlinearity involved in equation (4.6). This MIP formulation is based
on an observation that the profit tranche associated with a market during each time period can
be determined by evaluating the function h(·) at a discrete set of K points. Even though the LP-
relaxation of this MIP formulation is weak, it can be used to solve problems of realistic sizes when
the number of markets is small.

In order to tackle problems with more markets, we present an alternative formulation in which
the decision variables are the tranches associated with each market during each time period. This
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approach results in an optimization problem with very few decision variables (in a discrete space)
but has a nonsmooth objective function. As a second contribution of this work, we extend this
formulation for IRR-based PSCs to one in which the decision variables can take continuous values.
We then propose a fast and scalable search algorithm that can find feasible solutions of the alternative
formulation efficiently. Feasible solutions of this alternative formulation can be used to to determine
the profit tranche associated with each market during each time period which can then be used to
easily recover a feasible solution of the original MIP formulation. We demonstrate in Section 4.6 that
this solution technique is effective in finding feasible solutions for problems with a larger number
of markets.

Single-market models for IRR-based PSCs can be solved efficiently using our proposed MIP
formulation. We leverage this property in our third contribution; a market-based decomposition
scheme. In this scheme, we first reformulate our proposed MIP formulation by making copies,
for each market, of all decision variables involving all resources that are shared across all markets.
Additional constraints are added to the formulation to force the copies to be equal to each other. We
then use Lagrangian relaxation to decompose the resulting formulation into independent single-
market subproblems. We propose two algorithms to solve the resulting Lagrangian dual problem.
The first is a textbook subgradient method while the second is based on progressive hedging [100].
Our experiments show that the market-based decomposition approach produces solution bounds
(for problems with multiple markets) that are nearly an order of magnitude better than those
produced by the MIP formulation. The combination of the search algorithm to quickly find feasible
solutions and the market-based decomposition scheme to validate solutions with bound constitutes
an integrated approach suitable for solving problems with IRR-based PSCs involving multiple
markets.

There has been some recent interest [35] in the design of parameter update rules to obtain solution
bounds from progressive hedging. Commonly used parameter update rules [81, 107, 46] focus
more on the “consensus” of the copies of the variables in each of the decomposed sub-problems.
However, since our goal is to obtain solution bounds, there may not be a cost associated with
losing consensus. As a fourth contribution, we propose a simple parameter update rule, for our
decomposition algorithm, that is effective in finding good dual solutions for the Lagrangian dual
problem.

The remainder of this paper is organized as follows. In Section 4.2, we review notation and
provide some background on IRR-based PSCs. We present a MIP formulation in Section 4.3. In
Section 4.4, we present the alternative solution technique for based on a continuous-domain MIP
formulation. We discuss market based decomposition algorithms to obtain solution bounds in
Section 4.5. A computational study of the performance of our proposed formulations, solution tech-
niques, and algorithms from Sections 4.3-4.5 is presented in Section 4.6. We close with concluding
remarks in Section 4.7.
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4.2 Notation & Background

Consider a multi-period operational planning set X, involving markets A = {1, 2, . . . A}, with a
decision horizon spanning a finite set T = {1, 2, . . . , T } of time periods. During each time period
t = 1, 2, . . . , T , operations involving the market a = 1, 2, . . . ,A generate a revenue stream ra,t and
require expenses ca,t that result in a series of cash flows fa,t. An operational planning problem
(involving X) with a linear objective function can be formulated as follows:

max
A∑
a=1

T∑
t=1

πtfa,t subject to fa,t = ra,t − ca,t, (c, r, x) ∈ X,

where x is the vector of decision variables corresponding to resources, about which we say more
below. Here, πt ∈ R+ is a positive weight on the cash-flows during time period t. If the objective
function is the NPV, then πt has the form (1 + π̂)−t where π̂ ∈ (−1,∞) is a discounting rate that
adjusts for time-value of money. For strategic planning problems with IRR-based PSCs, the objective
function can be modelled using a discontinuous and nonconvex function G(·) (known as the PSC
function) of the revenues ra,t and expenses ca,t. The problem then has the following form:

maxG(r, c) subject to (c, r, x) ∈ X. (4.3)

In this paper, we propose models, solution techniques and algorithms for the formulation (4.3).
We assume the following structure in the vector x. Let xa denote decision variables corre-

sponding to resources that are local to market a andw ∈W denote decision variables associated
with resources that are shared across all markets. The variables xa, a = 1, 2, . . . ,A andwmay be
continuous or discrete and are related by the following linking constraints:∑

a∈A

Caxa +Dw 6 d. (4.4)

(Here, Ca, a = 1, 2, . . . ,A and D are matrices and d is a vector.) A production model X with such a
structure can be written as follows:

X = {c, r, x,w : w ∈W, (ca, ra, xa,w) ∈ Xa ∀a ∈ A, and (4.4)}, (4.5)

where Xa denotes the subset of X that models operations involving only market a ∈ A. The
full decision vector x has the form {w, x1, x2, . . . , xA}. For the production model illustrated in
Figure 4.1, the shared and local resources are facilities and customers, respectively. The set W
captures constraints that involve only the facilities, whereas Xa captures constraints that involve
customers in market a ∈ A. The linking constraints (4.4) model constraints that involve facilities
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Table 4.1: Sample parameters used in an IRR-based PSC.

Tranche IRR Range (%) Profit fraction
k (λk, λk+1] µk

1 (-100, 15] 70%
2 (15, 20] 60%
3 (20, 30] 25%
4 (30,∞) 15%

Table 4.2: Example of an IRR-based PSC with 1 market, 4 tranches and 5 time periods.

Time
(t)

Investment
(c1,t)

Revenue (r1,t) IRR
(q1,t)

Tranche
(k1,t)

Contractor
Share (µk1,t )

Cash Flow
(µk1,tr1,t −
c1,t)

0 4000 0 n.a 1 70% -4000
1 0 2300 -43% 1 70% 1610
2 0 3000 20% 1 70% 2110
3 0 2800 44% 2 60% 1680
4 0 1000 48% 4 15% 150

that are shared between markets. The assumed structure of X is general enough to be useful in a
wide range of practical applications.

IRR-Based PSCs

We now describe and analyze the PSC function G of an IRR-based PSC (4.3). Let qa,t denote the
smallest value of the IRR calculated from the cash flows fa,t using:

h(qa,t, fa,[1,t]) = 0, a = 1, 2, . . . ,A, t = 1, 2, . . . , T . (4.6)

In an IRR-based PSC, the fraction of the revenue ra,t from market a retained by the contractor during
time period t is a piecewise-constant function of qa,t. The range of possible values of qa,t, which is
(−1,∞), is divided into a discrete and disjoint set of profit tranches K := {1, 2 . . . K} associated with
trigger points λk, k = 1, 2, . . . ,K. (Typically, K is set to four or five [28].) A market a is associated
with profit tranche ka,t ∈ K during time period t if qa,t−1 ∈ (λk, λk+1]. The market a is always in
the first profit tranche during the first time period or if all cash flows in the sequence fa,[1,t] are
negative. (Recall that qa,t does not exist if all cash flows in fa,[1,t] are of the same sign.) If all cash
flows in fa,[1,t] are positive, then market a is associated with tranche K. The profit tranche ka,t
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determines the fraction µka,t of the revenue, from market a, retained by the contractor during time
period t. The parameters µl, l = 1, 2, . . . , K usually satisfy the condition

µ1 > µ2 . . . > µK.

Table 4.1 provides an illustration of trigger points λk and profit fractions µk used in a typical
contract. Table 4.2 shows a sample calculation of a planning problem with 5 time periods involving
an IRR-based PSC with 4 profit tranches and 1 market. A procedure to evaluate the PSC function G
is presented in Algorithm 1. Here, the PSC function has the form

∑
a∈A
∑
t∈T πtfa,t where fa,t can

be calculated from the revenues ra,t and expenses ca,t using

fa,t = µka,tra,t − ca,t a = 1, 2, . . . ,A, t = 1, 2, . . . , T .

Algorithm 1: Procedure for evaluating G(·).
Data: Function arguments ra,[1,t], ca,[1,t] and parameters λk,µk ∀k ∈ K,πt ∀t ∈ T

Result: Production sharing function G(ra,[1,t], ca,[1,t])

1 g← 0
2 for a = 1, 2, . . . , A do
3 fa,1 ← µ1ra,1 − ca,1

4 g← g+ π1fa,1

5 t← 2
6 while t 6 T do
7 Solve for qa,t in

∑t
s=1

fa,s
(1+qa,t)s

= 0
8 if qa,t exists and qa,t ∈ (λk−1, λk] for some k > 1 then
9 fa,t ← µkra,t − ca,t

10 else if fa,t−1 > 0 then
11 fa,t ← µKra,t − ca,t

12 else
13 fa,t ← µ1ra,t − ca,t

14 g← g+ πtfa,t

15 t← t+ 1

16 return g

Assumptions & Restrictions

We specify here some assumptions about the sequence of cash flows fa,[1,t] that commonly hold in
practice and that will be assumed in the remainder of the paper. To avoid an overload of notation,
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Figure 4.2: Illustration of the assumptions made while modelling IRR-based PSCs

(a) Assumption 1: The NPV function h(·) has at most
one root.
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(b) Property 2: The sequence of tranches associated with
a single market are nondecreasing
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we drop the market subscript a from all quantities in this section.

Assumption 4.1. Given a series of cash flows f[1,t], the equation h(qt, f[1,t]) = 0 has at most one unique
root. If it has one unique root, then f1 < 0.

Assumption 4.1 is illustrated in Figure 4.2(a). When equation (4.6) has no root, then the cash flows
f[1,t] are either all negative or all positive, putting the system in the lowest or the highest profit
tranche during time periods 2, 3, . . . , t. When equation (4.6) has one root, Assumption 4.1 ensures
that there exists a root for h(q̂, f[1,t]) = 0 in the range [q̂l, q̂u] if and only if h(q̂l, f[1,t]) > 0 and
h(q̂u, f[1,t]) 6 0. Using Assumption 4.1, we can formulate IRR-based PSCs as a MIP using the fact
that a market lies in tranche k ∈ {2, 3, . . . , K} if

h(λk, f[1,t]) 6 0 and h(λk−1, f[1,t]) > 0. (4.7)

A sufficient condition for Assumption 4.1 to hold is the single sign-change test [75] with an additional
condition that f1 < 0. The single sign-change test limits the number of sign changes in the series
of cash-flows f[1,t] to exactly one, which in turn limits the number of IRRs to exactly one, using
Descartes’ rule of signs. The additional condition that f1 < 0 ensures that the sign of the cash flows
f[1,t] changes from negative to positive, as required in (4.7). Assumption 4.1 also holds under the
Norstrøm condition [71], with the additional requirement that f1 < 0. The Norstrøm condition
states that an IRR due to cash flows f[1,t] is unique if the sequence of cumulative cash flows {

∑t
s=1 fs}



77

has exactly one sign change. Both these sufficient conditions occur quite commonly in practical
applications.

Next, we focus our attention on solutions that satisfy the property that the sequence of tranches
associated with each market during each time period is nondecreasing (see Figure 4.2(b)).

Property 4.2. τ2 > τ3 > · · · > τK where τk denotes the first time period t such that h(λk, f[1,t]) > 0.

The following proposition shows that Property 4.2 is not restrictive under the single sign-change
test with f1 < 0.

Proposition 4.1. Given a series of cash flows f[1,T ] such that fs 6 0, s ∈ {1, 2, . . . ,p − 1} and fs > 0,
s = p,p+ 1, . . . , T , then Property 4.2 holds.

Proof. For time s < p, the system is always in the first profit tranche. Hence, we need only focus
on the case when s > p. Let qt denote the unique IRR calculated at the end of time periods
t > p. We know that qt is unique when t > p because f[1,t] satisfies the single sign-change test.
From the definition of qp, we know that h(f[1,p],qp) = 0. Since fp+1 > 0 and qp > −1, we have
h(f[1,p],qp) + fp+1/(1 + qp) > 0. From, the definition of qp+1, we know that h(f[1,p+1],qp+1) = 0
which, when combined with h(f[1,p+1],qp) > 0, implies that qp+1 > qp, because of the regularity
of the IRR under the single-sign change test. By induction, we have the following:

qp 6 qp+1 6 · · · 6 qT

Hence, the tranche associated with time period s+ 1 must be greater then or equal to that associated
with s for s > p.

Property 4.2 reduces the number of possible combinations of the K tranches associated with a
single market during each of the T time periods to O(TK) from O(KT). This reduction can have
a significant impact on the computational effort required to solve the problem, because in most
practical applications, the number of tranche levels K varies between 4 and 6 while the number of
time periods T can be significantly greater, for example, T = 20 or T = 25.

4.3 MIP Formulations

In this section, we present a MIP formulation for (4.3). Let ha,k,t denote the NPV for market a during
time period t calculated using the cash flows fa,[1,t] discounted at an interest rate λk. From (4.1), we
have

ha,k,t =

t∑
s=1

fa,s

(1 + λk)s
, a = 1, 2, . . . , A, k = 2, 3, . . . , K, t = 1, 2, . . . , T. (4.8)
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Table 4.3: State of binary variables for a system with three tranches and four time periods

Time Period Tranche bk,t bk,t − bk+1,t sgn(hk,t)

0 1 1 0 0 0 1 0 0 0 - - - -
1 1 1 0 0 0 1 0 0 0 - - - -
2 1 1 0 0 0 1 0 0 0 - - - +
3 2 1 1 0 0 0 1 0 0 - + + +
4 4 1 1 1 1 0 0 0 1 - + + +

Let ba,k,t denote a binary variable that is set to one if market a ∈ A is associated with a tranche
k ′ > k during time period t ∈ T. Given minimum and maximum attainable values of the function
h(fa,[1,t], λk) — mh

k,t and Mh
k,t, respectively — and using (4.7), we have the following formulation:

mh
a,k,t(1 − ba,k,t) 6 ha,k,t−1 6 Mh

a,k,tba,k,t a ∈ A, k = 1, 2, . . . , K, t = 2, . . . , T, (4.9)

ba,k−1,t > ba,k,t a ∈ A k = 2, 3, . . . , K, t ∈ T, (4.10)

ba,k,1 = 0 a ∈ A, k = 2, 3, . . . , K, (4.11)

ba,1,t = 1 a ∈ A, t ∈ T. (4.12)

Table 4.3 illustrates the state of the binary variables for the sample calculation of the IRR-based PSC
in Table 4.2 and their relation to the sign of the NPV variables ha,k,t.

Next, we enforce the condition from Property 4.2 in which the sequence of tranches associated
with each market during a time period is nondecreasing:

ba,k,t−1 > ba,k,t a ∈ A, k = 2, 3, . . . , K, t = 2, 3, . . . , T. (4.13)

We can complete the MIP model for IRR-based PSCs by expressing the cash flow fa,t in terms of the
appropriate contractor profit fraction µk, as follows:

fa,t =
∑
k∈K

µkpa,k,t − ca,t a ∈ A, t ∈ T, (4.14)

ra,t =
∑
k∈K

pa,k,t a ∈ A, t ∈ T (4.15)

pa,k,t 6 Mp
k,t(ba,k,t − ba,k+1,t) a ∈ A, k = 1, 2, . . . , K − 1, t ∈ T (4.16)

pa,K,t 6 Mp
k,tba,K,t a ∈ A, t ∈ T. (4.17)

Here, pa,k,t is the disaggregation of the revenue ra,t based on the set of profit tranches K and Mp
a,k,t
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Table 4.4: Problem and solution statistics for a single instance of the MIP formulation in (4.18) for a
sample application problem solved using Gurobi 5.0.1 with 2 threads for 7200 seconds.

Markets Variables (Binary) Constraints Time (s) Optimality
Gap (%)

LP Gap
(%)

Nodes

1 15132 (1457) 22101 680.39 < 0.1 184.3 1323
2 15263 (1514) 22401 1117.4 < 0.1 186.9 2934
3 15389 (1568) 22701 3670.3 < 0.1 189.4 12136
4 15515 (1622) 23001 - 8.24 190.4 28208
5 15646 (1679) 23301 - 34.4 186.3 22381
6 15762 (1727) 23601 - 66.2 194.9 10515

is the maximum revenue attainable from market a while being in tranche k during time period
t. In other words, pa,k,t = ra,t if the market a ∈ A is in tranche k ∈ K during time period t ∈ T

and pa,k,t = 0 otherwise. The constraints (4.8)-(4.17) formulate an IRR-based PSCs for each market
a ∈ A which we denote using the set:

Ya :=
{
ba ∈ {0, 1}K×T, ca ∈ RK×T, fa ∈ RK×T,ha ∈ RT, pa ∈ RT, ra ∈ RTc : (4.8)-(4.17)

}
IRR-based PSCs for with multiple markets can be formulated using

Y := ⊗a∈AYa,

where the operator ⊗ denotes the generalized-cartesian product. A MIP formulation for (4.3) can
now be written as:

max
∑
a∈A

∑
t∈T

πtfa,t

subject to (ba, ca, fa,ha,pa, ra) ∈ Ya a ∈ A (4.18)

(ca, ra, xa,w) ∈ Xa a ∈ A

w ∈W∑
a∈A

Caxa +Dw 6 d.

We illustrate the shortcomings of formulation (4.18) by solving an instance of a sample-application
problem, with 1-6 markets using Gurobi 5.0.1 running on two threads with a two-hour time limit.
Section 4.6 provides additional details about the sample application problem, datasets and system
setup used to obtain these results. Table 4.4 provides problem statistics, wall clock time (in seconds)
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to reach 0.1% optimal solution, terminal optimality gaps, root LP gaps and the number of nodes
explored. A wall clock time of “-” indicates that the solver reached the 2 hour time limit. The
root LP gap reports the quantity (LP − BFS)/BFS as a percentage, where LP is the value of the root
LP-relaxation of (4.18) and BFS is objective value of the best found feasible solution. We observed
that the root LP gap for these instances was 180%-190% above the best feasible solution. We attribute
this weak LP-relaxation to the difficulty in obtaining natural variable upper and lower bounds mh

a,k,t

and Mh
a,k,t on the NPV variables ha,k,t required for the constraints in (4.9). Even with a weak LP

relaxation, we can still solve (4.18) to optimality in a reasonable amount of time when the number
of market is less than or equal to 3. However, the terminal optimality gaps increase significantly as
the number of markets increases beyond 3, even though the problem size increases only marginally.
This is because the key decision variables in (4.18) are the binary variables {b1,b2, . . . ,bA}. If the
values of these variables are fixed, the resulting MIP can be solved within a few minutes. Using Prop-
erty 4.2, we know that the number of feasible combinations for the set of variables {b1,b2, . . . ,bA}
for a single market problem is O(TK). However, for a problem with A markets, the number of
possible values of {b1,b2, . . . ,bA} is O(ATK

). Normally, with branch-and-bound, we hope to avoid
searching for all possible feasible solutions. However, the weak LP-relaxation makes it harder for a
branch-and-bound algorithm to effectively reduce the solution space. To summarize: Our results
demonstrate that the MIP formulation (4.18) is not sufficient to solve production planning problems
with IRR-based PSCs, especially when the number of markets is more than 3. In the following
sections, we propose alternative solution techniques and algorithms to find feasible solutions as
well as bounds for (4.3).

4.4 Continuous Domain Heuristics

In this section, we present a technique to obtain feasible solutions for (4.3). We first reformulate (4.3)
as a search problem in which the integer decision variables are tranche configurations τ := {τa,k ∈
{1, 2, . . . , T} : a ∈ A, k = 1, 2, . . . , K} that denote the time period at which the market a ∈ A

changes from tranche level k − 1 to k. This formulation has only A × K decision variables, but
the objective function can be computed only by solving a MIP involving the production model X,
with additional linear constraints on the signs of the NPV. To efficiently search for good tranche
configurations, we extend this alternate formulation to account for fractional tranche configurations
τ̂ := {τa,k ∈ [1, T] : a ∈ A, k = 1, 2, . . . , K} that need not be integral. We then propose a continuous
domain search algorithm to find good fractional/integral tranche configurations and therefore good
feasible solutions for (4.3).



81

The Fixed-Tranche Problem

Let τa,k ∈ {1, . . . T} denote the time period t ∈ T during which the market a ∈ A moves from tranche
k− 1 to k where k = 2, 3, . . . , K. From Property 4.2, we know that

T := {τ ∈ {1, 2, . . . , T}A×K : 1 = τa,1 6 τa,2 6 · · · 6 τa,K, a ∈ A}

is the set of feasible tranche configurations for (4.3). We define the fixed-tranche problem as a MIP
formulation in which the tranche configuration τ is known a priori. Given τa,k ∀a ∈ A,k ∈ K, we
know the tranche associated with each market a during each time period t, which imposes the
following restrictions on the signs on the NPV variables ha,k,t:

ha,k,t 6 0, a ∈ A, k = 2, 3, . . . , K, t ∈ T : t < τa,k, (4.19a)

ha,k,t > 0, a ∈ A, k = 2, 3, . . . , K, t ∈ T : t > τa,k, (4.19b)

where ha,k,t is defined using (4.8). It is easy to see that (4.19) is equivalent to the constraints (4.9)
in the MIP formulation (4.18) with the values of all binary decision variables b fixed a priori. The
tranche configuration also fixes the fraction µa,t(τ̄) retained by the contractor during time τ̄ for
market a as follows:

µa,t(τ̄) =


µ1, τ̄ < τa,2

µk, τa,k 6 τ̄ < τa,k+1, k ∈ {2, 3, . . . K − 1}

µK, τa,K 6 τ̄

(4.20)

The cash flow fa,t can be calculated as follows:

fa,t = µa,t(t)ra,t − ca,t ∀a ∈ A, t ∈ T (4.21)

Given τ ∈ T, we can recover a feasible solution for (4.18) by evaluating the following fixed-tranche
function g : T→ R:

g(τ) := max
∑
a∈A

∑
t∈T

πtfa,t

subject to (c, f,h, r) ∈ Q(τ)

(ca, ra, xa,w) ∈ Xa ∀a ∈ A (4.22)

w ∈W∑
a∈A

Caxa +Dw 6 d
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where the set Q(τ) is defined by

Q(τ) :=
{
c ∈ RA×T, f ∈ RA×T , h ∈ RA×K×T, r ∈ RA×T : (4.8), (4.19)-(4.21)}.

The optimal tranche configuration τ ∈ T can be computed by solving the nonconvex optimization
problem

max g(τ) subject to τ ∈ T (4.23)

where the decision variables τ are constrained to lie in a discrete space. By construction of (4.22), it
is easy to see that the cost of an optimal solution of (4.23) is exactly equal to the optimal objective
of (4.18). Figure 4.3(a) illustrates the function values of g(·) for a problem with K = 3 and A = 1.
The x, y, and z-axes are values for τ1,2, τ1,3, and g(τ), respectively. As the figure illustrates, the search
for the optimal tranche configuration from the set T is challenging because the decision variables lie
in a discrete space which restricts the class of methods to solve (4.23) to pattern search (or direct
search) methods. Typically, pattern search algorithms move from solution to solution in the space
of candidate solutions (T) by applying local changes until no further improvements can be found.
The difficulty with pattern search algorithms is that to find good search directions, one may need to
evaluate many points in the neighborhood of the current iterate. The number of points required to
make a good step is related to the dimension of the search space which, in (4.23), is exponential in
the number of markets. This fact motivates us to extend the formulation in (4.23) to allow fractional
tranche configurations that can take values in the range [1, T], thus allowing us to use continuous
domain search algorithms.

Continuous-Domain Extension of Q(τ)

In this section, we extend the definition Q(τ) to allow fractional tranche configurations. For each
market a ∈ A, let τ̂a,k ∈ [1, T] denote a real-valued quantity indicating the time at which the market
a ∈ A moves from tranche configurations k− 1 to k, for k = 1, 2, . . . , K. From Property 4.2, the set
of feasible fractional tranche configurations is:

T̂ := {τ̂ ∈ [1, T]A×K : 1 = τ̂a,1 6 τ̂a,2 6 · · · 6 τ̂a,K ∀a ∈ A}.

In extending Q(τ), we first extend (4.9) using the definition of continuous-time NPV, where com-
pounding is applied continuously, instead of at the end of a time period. Given δ ∈ [0, 1], we define
the NPV at time t+ δ as follows:

ĥ(fa,[1,t+1], q̂, t+ δ) :=
t∑
s=1

fa,s

(1 + q̂)s
+ (δfa,t+1)e

−q̂c(δ+t) a ∈ A. (4.24)
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Here, the discounting rate q̂c = log(1 + q̂) accounts for continuous compounding. In (4.24), the
NPV at time t+ δ is calculated using discrete time discounting at a rate q̂ for the first t time periods,
followed by continuous compounding at a rate qc in the time interval [t, t+ δ], during which we
assume that market a ∈ A has a cash flow of δfa,t+1. We can simplify the expression in (4.24) as
follows:

ĥ(fa,[1,t+1],q, t+ δ) =
t∑
s=1

fa,s

(1 + q̂)s
+

δfa,t+1

(1 + q̂)t+δ
, a ∈ A. (4.25)

Note that (4.25) is consistent with (4.9) when δ ∈ {0, 1}. Using (4.25), we restrict the signs on the
NPV variables ha,k,t during all time periods t ∈ T\{bτ̂a,kc, dτ̂a,ke} as follows:

ha,k,t 6 0 ∀a ∈ A, k ∈ {2 . . .K}, t ∈ T : t 6 bτ̂a,kc− 1 (4.26a)

ha,k,t > 0 ∀a ∈ A, k ∈ {2 . . .K}, t ∈ T : t > dτ̂a,ke. (4.26b)

Here, ha,k,t is defined using (4.8). During the time periods bτ̂a,kc and dτ̂a,ke, we use the definition
of NPV in (4.25) to restrict ĥ(fa,[1,τa,k], λk, τ̂a,k) 6 0 and ĥ(fa,[1,τa,k−1], λk, τ̂a,k − 1) > 0. We can
express this restriction as follows:

ha,k,bτ̂a,kc−1 +
(τ̂a,k − bτ̂a,kc)fa,[1,bτ̂a,kc]

(1 + λk)τ̂a,k−1 6 0 ∀a ∈ A, t ∈ T (4.26c)

ha,k,bτ̂a,kc +
(τ̂a,k − bτ̂a,kc)fa,[1,bτ̂a,kc+1]

(1 + λk)τ̂a,k
> 0 ∀a ∈ A, t ∈ T. (4.26d)

The use of constraints (4.26) in the is based on (4.19) in formulation (4.22). This may seem may
seem less natural that a formulation in which we can simply restrict ĥ(fa,[1,τ̂a,k], λk, τ̂a,k) = 0, but is
consistent with (4.22) when the tranche configurations are integral, which is the main purpose of
the continuous domain extension of Q(τ).

Next, we use the fractional tranche configuration τ̂ to determine, in advance, the contractor
share during time periods t ∈ T for each market a ∈ A using

µ̂a,t(τ̄) =



µ1, τ̄ 6 bτ̂a,2c

µk, dτ̂a,ke 6 τ̄ < bτ̂a,k+1c, k ∈ {2, . . . K − 1}

µK, dτ̂a,Ke 6 τ̄

µ̄(τ̂a,k), τ̄ = bτ̂a,kc, k ∈ {2 . . .K}

(4.27)



84

Here, µ̂a,t(τ̄) is the contractor share at a time τ̄ ∈ [1, T ] and

µ̄a,t(τ̂) :=

σRa,t(τ̂)∑
σLa,t(τ̂)

µk

(
min{τ̂a,k+1, t+ 1}− max{τ̂a,k, t}

)

where σLa,t(τ̂) := max{k ∈ K : τ̂a,k 6 t} and σHa,t(τ̂) := max{k ∈ K : bτ̂a,kc 6 t}. The first three
terms of µ̂(·) in (4.27) determine the share of the revenue retained by the contractor during the time
periods t ∈ T when market a ∈ A lies completely in a tranche k ∈ K. The only difference between
µ̂(·) and µ(·) in (4.20) occurs during the time periods dτ̂a,ke ∈ T where the market a ∈ A is partially
associated with other tranches in K. During these time periods, we calculate the contractor share as
a linear combination of the contractor share from profit tranches {k2 ∈ K : bτ̂a,kc = bτ̂a,k2c}. The
discounting rate µ̂(·) is based on the intuition that marketa ∈ A lies in tranche k2−1 ∈ {2 . . .K}during
the interval [min(τ̂a,k2 , dτ̂a,k2e), max(τ̂a,k2−1, bτ̂a,kc)] during which we assume that the contractor
retains µk2−1 of the revenue. Again, we highlight that the calculation of the contractor share in µ̂(·)
is consistent with µ(·) used in formulation (4.22) when τ̂a,k is integral.

We can use (4.27) to calculate the cash flow fa,t as follows:

fa,t = µ̂a,t(t)ra,t − ca,t ∀a ∈ A, t ∈ T (4.28)

We now define the continuous domain extension of the formulation (4.22) for τ̂ ∈ T̂ as

ĝ(τ̂) := max
∑
a∈A

∑
t∈T

πtfa,t (4.29)

subject to (c, f,h, r) ∈ Q̂(τ)

(ca, ra, xa,w) ∈ Xa a ∈ A

w ∈W∑
a∈A

Caxa +Dw 6 d,

where the set is given by

Q̂(τ̂) :=
{
c ∈ RA×T, f ∈ RA×T, h ∈ RA×K×T, r ∈ RA×T : (4.8), (4.26)-(4.28)}.

An optimal fractional tranche configuration can be computed by solving:

max ĝ(τ̂) subject to τ̂ ∈ T̂ (4.30)

Based on the construction of Q̂(τ), it is easy to verify that the following holds.
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Lemma 4.3. Q̂(τ) = Q(τ) and ĝ(τ) = g(τ) for τ ∈ T̂.

Figure 4.3 illustrates the difference between the functions g(·) and ĝ(·) for a problem with a A = 1,
and K = 3. The x and y axes denote τ̂1,2 and τ̂1,3 respectively. The function values of ĝ(·) are
illustrated using a heat-map where shades of blue indicate a higher function value than shades
of red. The lower-right triangular region indicates infeasible solutions because τ̂a,2 > τ̂a,3. We
produced Figure 4.3(b) by computing ĝ(·) on an even grid with a spacing of 0.01 and Gaussian
interpolation on the function values.

Figure 4.3: An illustration of the differences between formulations (4.22) and (4.29).

(a) The fixed-tranche problem (4.22).
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(b) The fixed fractional-tranche problem (4.29).
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Search Algorithm for Fractional Tranche Configurations

We now describe a search algorithm that can be used to generate feasible solutions for (4.3). First, we
use an LP-based approximation of ĝ(·) to compute function values and search directions efficiently.
We then propose an algorithm, motivated by the gradient-projection method [82], to find good
fractional tranche configurations. At each iteration, we take a step along a certain search direction and
project the resulting point onto the feasible set. The fractional tranche configuration configuration
returned by this algorithm is then rounded to obtain a feasible integral tranche configuration, which
can then be used to construct feasible solutions for (4.3).

Consider the following LP-based approximation of (4.29), defined for τ̃ ∈ [1, T]A×K, in which
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the production set X is replaced by its LP-relaxation:

g̃(τ̃) := max
∑
a∈A

∑
t∈T

πtfa,t (4.31)

subject to (c, f,h,p, r) ∈ Q̂(τ)

(ca, ra, xa,w) ∈ LP(Xa) a ∈ A

w ∈ LP(W)∑
a∈A

Caxa +Dw 6 d

τ̂a,k+1 − τ̂a,k = τ̃a,k+1 a ∈ A, k ∈ {2 . . . K − 1}

τ̂a,2 − τ̂a,1 = τ̃a,2. ∀a ∈ A (4.32)

τ̂a,1 = 1. ∀a ∈ A

Here, the parameters τ̃ represent the time elapsed between the transition between tranche levels
k− 1 and k. The change in variables, from τ̂ in (4.29) to τ̃ in (4.31), alters the constraints τ̂ ∈ T̂ in
problem (4.30) to simple bound constraints τ̃ ∈ Ω, where

Ω := [1, T]A×K.

The change in variables makes the projection of the point τ̃ on to the convex set Ω (defined as
PΩ(τ̃) = argmin

τ̂∈Ω
‖τ̃− τ̂‖2) simple to perform. There are both advantages and limitations to using

an LP-based approximation of g̃(·). An advantage is g̃(·) can be computed easily by solving an LP,
which is significantly cheaper than ĝ(·) which requires a MIP. Additionally, we can find good search
directions, at a point τ̃, by solving many closely related LPs, which require only a few of additional
simplex iterations once ĝ(τ̃) is computed. A disadvantage is that LP(X) may not a suitable proxy
for X. The algorithm described here works best when applied to production models with strong
LP-relaxations.

We now focus on obtaining good feasible solutions to the following bound-constrained opti-
mization problem:

max
τ̃∈Ω

g̃(τ̃). (4.33)

Given a point τ̃, we first compute a search direction ∆g̃(·) using

∆g̃a,k(τ̃) =
g̃(τ̃+ δea,k) − g̃(τ̃)

δ
∀a ∈ A, k ∈ K, (4.34)

which is motivated by the forward-difference scheme for approximating gradients of smooth
functions. Here, δ > 0 is a small perturbation and ea,k is a unit vector along the coordinate
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Algorithm 2: A search algorithm for (4.33).

Data: Initial point τ̃0, step size parameters α0, β, αmin, finite difference size δ, termination
threshold εtol and iteration limit N

1 i← 0
2 δi ← δ
3 repeat
4 ∆g̃a,k(τ̃

i
)← g̃(τ̃

i
+δiea,k)−g̃(τ̃

i
)

δi
a ∈ A, k ∈ K

5 while g̃(PΩ(τ̃i + αi∆g̃(τ̃
i
)) > g̃(τ̃

i
) do

6 αi+1 ← βαi+1

7 if αi+1 6 αmin then
8 return τ̃i

9 τ̃
i+1 ← PΩ(τ̃

i
+ αi+1∆g̃(τ̃i))

10 αi+1 ← αi+1/β

11 δi+1 ← min(δ,αi+1‖∆g̃(τ̃i)‖
12 i← i+ 1
13 until ‖∆g̃c(τ̃)‖ 6 ε or i = N
14 return τi

corresponding to market a and tranche k. We can compute ∆g̃(τ̃) using (4.34) with (1 + AK)
function evaluations of g̃(·), each of which require a solution to an LP. Since δ is small, the LPs
are closely related and can be solved cheaply using the simplex method. If the function g̃(·) is
continuous (which is not always the case because the LP in (4.33) may be infeasible for some τ̃) then
(4.34) is simply a finite-difference approximate gradient of the function g̃(·). Although the search
direction ∆g̃a,k(τ̃) may not necessarily be an ascent direction (since g̃(·) is not differentiable), our
experiments demonstrate that this heuristic works well in our experiments.

Given τ̃i, an estimate of a solution of (4.33) at iteration i, our iterative search algorithm (see
Algorithm 2) uses ∆g̃a,k(τ̃) to update τ̃i using

τ̃
i+1

= PΩ
(
τ̃
i
+ αi∆g̃(τ̃

i
)
)
, (4.35)

where αi is the step length along the given search direction ∆g̃a,k(τ̃). The projection operator PΩ(·)
is defined in closed form as follows:

[PΩ(τ̃
i
)]a,k =


0 τ̃ia,k 6 1

T τ̃ia,k > T

τ̃ia,k otherwise.

a ∈ A, k ∈ {2 . . .K}.

We use a backtracking line search strategy to chose αi. We start with an initial step size α0 and
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select an acceptable step length if after a finite number of contractions of α0 (using parameter β < 1)
the following increase condition is satisfied:

g̃(PΩ(τ̃
i
+ (β)nα0∆g̃(τ̃

i
))) > g̃(τ̃

i
). (4.36)

In our experiments, we enforce the > above by requiring a sufficient increase of 10−3 in the function
value. The algorithm terminates if one of three conditions are satisfied: (a) we cannot find a suitable
step size αi > αmin that satisfies (4.36); (b) an iteration limit is reached; or (c) ‖∆g̃c(τ̃i)‖ 6 εtol,
where

[∆g̃c(τ̃
i)]a,k :=


min([∆g̃c(τ̃i)]a,k, 0) τ̃ia,k 6 1

max([∆g̃c(τ̃i)]a,k, 0) τ̃ia,k > T

∆g̃(τ̃
i
) 1 < τ̃ia,k < T,

a ∈ A, k ∈ K (4.37)

and εtol > 0 is a termination threshold close to zero. The criterion involving ∆g̃c(τ̃i) is analogous
to termination criterion used in box-constrained convex optimization problems. Notice that we
do not use a fixed value of δ while computing search directions using (4.34). Instead, we use an
adaptive perturbation parameter

δi ← min(δ,αi‖∆g̃(τ̃i−1
)‖),

which is always smaller than the size of the step taken by the algorithm.
The final step of our proposed solution technique is to convert the fractional tranche configuration

τ̃
∗ returned by Algorithm 2 to an integral tranche configuration τ∗ of (4.22) using the following

rounding scheme:
τ∗a,k = 1 + round

(∑
k′6k

τ̃∗a,k′
)

a ∈ A, k ∈ {2 . . .K}. (4.38)

We can use τ∗ to recover a feasible for (4.3) by evaluating g(τ∗) using (4.22). Although there is no
theoretical guarantee that this procedure results in a feasible solution of (4.3), we found that the
simple rounding scheme in (4.38) works well in practice.

4.5 Decomposition Methods For Solution Bounds

In this section, we propose a market-based decomposition scheme to obtain solution bounds for
IRR-based PSCs. Our approach is based on a reformulation of (4.18) which contains replicates of
the shared decision variablesw ∈W. Equality of the replicates is enforced through an additional
constraint. A Lagrangian relaxation of the reformulated MIP can then be decomposed into indepen-
dent subproblems, each involving only a single market. We propose two algorithms to solve the
Lagrangian dual problem.
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Market-Based Decomposition

Consider the following relaxation of (4.18)

max
∑
a∈A

∑
t∈T

πtfa,t

subject to (ba, ca, fa,ha,pa, ra) ∈ Ya a ∈ A (4.39)

(ca, ra, xa,w) ∈ LP(Xa) a ∈ A

w ∈ LP(W)∑
a∈A

Caxa +Dw 6 d,

where the sets Xa and W are replaced by their corresponding LP-relaxations, but the sets Ya
maintain their current status, to prevent the relaxation in (4.39) from becoming too weak. In (4.39),
the constraints involving sets Ya are decomposable by market. The challenge in decomposing the
entire problem by market is in the handling of the shared variablesw ∈W and the linking constraints
defined in (4.4) (which is the last constraint in (4.39)). We handlew by introducing replicateswa ∈W
for each market a ∈ A and enforce the additional equality constraint 1

A
∑
a′∈Awa′ = wa ∀a ∈ A.

We enforce (ca, ra, xa,wa) ∈ LP(Xa) and introduce the replicates into the linking constraints to
obtain the following formulation:

max
∑
a∈A

∑
t∈T

πtfa,t (4.40a)

subject to (ba, ca, fa,ha,pa, ra) ∈ Ya ∀a ∈ A (4.40b)

(ca, ra, xa,wa) ∈ LP(Xa) ∀a ∈ A (4.40c)

wa ∈ LP(W) ∀a ∈ A (4.40d)
1
A

∑
a′∈A

wa′ = wa ∀a ∈ A (4.40e)∑
a∈A

Caxa +Dwa 6 d (4.40f)

We use Lagrangian relaxation to obtain solution bounds for (4.40) by dualizing the constraints (4.40e)
and (4.40f). Define Θ := (∆1,∆2, . . . ,∆A, θ) to be the vector of Lagrangian multipliers, where
∆a are associated with constraints (4.40e) and θ > 0 are associated with the constraints (4.40f).
Without loss of generality, we can assume that

∑
a∈A ∆a = 0. Let ỹa := (ba, ca, fa,ha,pa, ra) and

x̃a := (ca, ra, xa,wa) denote the vectors of primal variables. Using
∑
a∈A ∆a = 0, we know that



90

the Lagrangian of (4.40) becomes
∑
a∈A La(x̃a, ỹa;Θ) where

La(x̃a, ỹa;Θ) :=
∑
t∈T

πtfa,t − ∆
T
awa − θT

( d
A

− Caxa −
Dwa

A

)
.

For each market a ∈ A, we define

LDa (Θ) := max
x̃a,waỹa

{
La(x̃a, ỹa;Θ) s.t. x̃a ∈ LP(Xa),wa ∈ LP(W), ỹa ∈ Ya

}
. (4.41)

It is clear that for any fixedΘ, the quantity
∑
a∈A L

D
a (Θ) is an upper bound on the optimal objective

of (4.40). We can compute LDa (Θ) for each market a ∈ A, independently, by solving a MIP which
is easier to solve than a single-market instance of the (4.18) because the binary decision variables
in X are relaxed. We can find the best (smallest) solution bound (over the possible range of dual
solutionsΘ) by solving the following Lagrangian dual problem:

G∗D := min
Θ

{∑
a∈A

LDa (Θ) : θ > 0,
∑
a∈A

∆a = 0

}
. (4.42)

Note that one may chose not to relax the sets Xa and W in the definition of (4.18). This choice
may result in a better solution bound, from (4.42), but requires additional computational effort to
solve each Lagrangian subproblem in (4.41). The trade-off between solution bound quality and
computational effort depends on the strength of LP(W) and LP(Xa).

Solving the Lagrangian Dual Problem

We now discuss two algorithms to solve the formulations of the previous section. The first is a
textbook subgradient algorithm while the second is a regularized decomposition method based
on progressive hedging. The regularization term helps compute high quality solution bounds
using fewer iterations than the traditional subgradient method, but each iteration is more expensive
because it requires solving a set of mixed-integer quadratic programs (MIQPs).

A Subgradient Method

We describe a subgradient algorithm for (4.40) in Algorithm 3. Given an estimate of dual multipliers
Θi, each iteration solves the problems in (4.41) forΘ = Θi to obtain (x̃a, ỹa)i+1, for each a ∈ A.
Next, we update the dual multipliersΘi = (∆i1,∆2

2, . . . ,∆iA, θi) by taking a step along the subgradient
∇LDa (Θi), using step sizes ηiw > 0 and ηid > 0. If the sequence of step sizes {ηiw} and {ηid} satisfy the
conditions

∑
i η
i
w =∞,

∑
i η
i
d =∞, ηiw → 0 and ηid → 0 as i→∞, then Algorithm 3 converges to
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Algorithm 3: DD+LP: Subgradient Method for (4.40).
Data: An initial set of primal variables (x̃a, ỹa)0, a ∈ A, an initial set of dual multipliers

∆0
1,∆0

2, . . . ,∆0
A, θ0 such that

∑
a∈A ∆

0
a = 0, an initial step size η0

w > 0 and η0
s > 0, an

iteration limit N > 1 and a termination tolerance εtol > 0.
Result: A valid upper bound for (4.18)

1 i← 0
2 GiD ←∞
3 repeat
4 Solve (4.41) withΘ =Θi for (x̃a, ỹa)i+1, for each a ∈ A;
5 ∆i+1

a ← ∆ia + δiv

(
wi+1
a −

∑
a∈Aw

i+1
a

A

)
a ∈ A;

6 θi+1
i ← θii + η

i
d

(
d−
∑
a∈A Cax

i+1
a −D

∑
a∈A

wi+1
a

A

)
+

;
7 δi+1

w ← δ0
w/(i+ 1);

8 δi+1
s ← δ0

s/(i+ 1);
9 Gi+1

D ← min(GiD,
∑
a∈A L

D
a (Θ

i));
10 i← i+ 1;
11 until

∑
a∈A ‖(ỹa, x̃a)i+1 − (ỹa, x̃a)i‖+ ‖Θi+1 −Θi‖ > εtol and i 6 N

12 return GiD

the optimal dual solution G∗D [30]. The algorithm terminates when an iteration limit is reached or
when the change in primal and dual variables falls below a threshold εtol.

A Regularized Decomposition Method

One of the disadvantages of the subgradient method discussed above is that it may take many
iterations before the dual multipliers converge to a stable accumulation point. To prevent Algorithm 3
from taking an extremely large number of steps, we regularize each Lagrangian subproblem in
(4.41) by introducing a prox-term into the objective:

(x̃a, ỹa)i+1 = argmax
x̃a,wa,ỹa

{
La(x̃a, ỹa;Θ) −

ρi

2
‖wa − w̄i‖2 : (4.43)

x̃a ∈ LP(Xa),w ∈ LP(W), ỹa ∈ Ya
}

where w̄ia =
∑
a∈Aw

i
a/A. Observe that the subproblem is now a concave MIQP which can solved

with existing optimization software. After solving the MIQPs in (4.43), we update the multipliers
using stepsizes ηid (for θ) and ρi (for ∆1,∆2, . . . ,∆A), which is also the penalty parameter in (4.43).
Algorithm 4 summarizes the method. Since each subproblem defined in (4.43) is nonconvex, there
are no known convergence results for this method. Nevertheless, it has been successfully used
to find both primal and dual solutions in the context of stochastic mixed-integer programming
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Algorithm 4: D+LP: Regularized Decomposition Method for (4.40).
Data: An initial set of primal variables (x̃a, ỹa)0, a ∈ A, an initial set of dual multipliers

∆0
1,∆2

2, . . . ,∆0
A, θ0 such that

∑
a∈A ∆a = 0, an initial step size δ0

s, an initial penalty
parameter ρ0, penalty decrease rate ρd, minimum penalty parameter ρm, iteration limit
N and a convergence threshold εtol.

Result: A valid lower bound for (4.18)
1 i← 0
2 w̄0 ← (

∑
a∈Aw

0
a)/A

3 repeat
4 Solve (4.43) withΘ =Θi for (x̃a, ỹa)i+1, for each a ∈ A;
5 w̄i+1 ← (

∑
a∈Aw

i+1
a )/A;

6 ∆i+1
a ← ∆ia + ρi

(
wi+1
a − w̄i+1

)
a ∈ A;

7 θi+1
i ← θii + η

i
d

(
d−
∑
a∈A Cax

i+1
a −D

∑
a∈A

wi+1
a

A

)
+

;
8 δi+1

s ← δ0
s/(i+ 1);

9 ρi ← max(ρdρi, ρm);
10 i← i+ 1;
11 until

∑
a∈A ‖(ỹa, x̃a)i+1 − (ỹa, x̃a)i‖+ ‖Θi+1 −Θi‖ > εtol and i 6 N

12 GiD ←
∑
a∈A L

D
a (Θ

i);
13 return GiD

[31, 108, 100, 20].

Updating ρi. It is well known that the performance of regularized decomposition methods is
sensitive to the choice of the penalty parameter ρi in (4.43). Many update rules for ρi have been
considered [81, 107, 46]. One common approach is to use is a constant penalty parameter ρc for the
entire algorithm. Another possibility is to vary the penalty parameters ρi adaptively at each iteration
to make performance less dependent on the initial choice of the penalty parameter. Typically, these
adaptive schemes chose an increasing sequence of {ρi} such that ρi →∞. The constant as well as
the adaptively increasing scheme try to ensure that ‖w̄i − (

∑
a∈Aw

i
a/A)‖2 → 0 as i→∞. While

consistency of the various copies of variables wa ∀a ∈ A is important for producing primal feasible
solutions, they may not result in good dual solutions. The update equations in Algorithm 4 suggest
that large values of ρ place a large penalty on deviations from consensus. Conversely, smaller values
of ρ tend to regularize the dual variables, thereby preventing them from making very large steps.
With these considerations in mind, we propose the following update scheme:

ρi+1 = max{ρdρi, ρm} (4.44)
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where ρd < 1, and ρm > 0 is the minimum allowable value for ρi. In order to obtain a valid solution
bound on the optimal objective of (4.40), we use the dual multipliersΘ∗ returned by the algorithm
to compute

∑
a∈A L

D
a (Θ

∗) using (4.41).

4.6 Experimental Results

We conducted numerical experiments to test the effectiveness of the MIP formulation (4.18), the
continuous domain search algorithm of Section 4.4, and the decomposition methods from Section 4.5.
The two main purposes of our experiments are:

• To compare the effectiveness of the MIP formulation (4.18) and Algorithm 2 in obtaining
feasible solutions for (4.3); and

• To compare the effectiveness of Algorithms 3 and 4 and the MIP formulation (4.18) in obtaining
solution bounds for (4.3).

We report tests conducted on randomly generated instances of a sample application problem.
Appendix A provides more details on how the instances were generated. We used Gurobi 5.0.1
(with default options) to solve all LPs, MIPs, and MIQPs to 0.1% tolerance. We ran all experiments
using two threads on a Dell R420 with 128G Memory with a 2.66GHz Intel Core2 Quad 2.30G
E5-2470 Xeon Chip set.

Sample Application

We conducted numerical experiments on a multi-period production planning problem. In this
problem, the shared resources are a set of production facilities I that manufacture a single product
to satisfy the demand of customers J distributed across markets A. The development of each facility
l ∈ I over the planning horizon T involves both discrete and continuous decisions. Discrete decisions
include customer and facility opening times, while continuous decisions concern the amount of
product distributed from shared facility l ∈ I to customer j ∈ J. The demand d̂jt for the product
from each customer j ∈ J during time period t ∈ T is assumed to be known a priori, and there is
a supply limit ŝl,t for each facility l ∈ I during each time period t ∈ T. The set of constraints that
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define this multi-period production set are as follows:∑
j∈Ja

κl,jxl,j,t = ra,t a ∈ A, t ∈ T (4.45a)

∑
j∈Ja

ωl,jxl,j,t +
∑
l∈I

γl

A
(zl,t − zl,t−1) +

∑
j∈Ja

σj(vj,t − vj,t−1) = ca,t a ∈ A, t ∈ T (4.45b)

∑
l∈I

xl,j,t 6 d̂j,tvj,t j ∈ J, t ∈ T (4.45c)∑
j∈J

xl,j,t 6 ŝl,tzl,t l ∈ I, t ∈ T (4.45d)

zl,t 6 zl,t+1 l ∈ I, t ∈ T (4.45e)

vj,t 6 vj,t+1 j ∈ J, t ∈ T, (4.45f)

where the set Ja denotes the set of all customers j ∈ J that belong to a market a ∈ A, the continuous
decision variable xl,j,t determines the amount of the product distributed from facility l ∈ I to
customer j ∈ J during time t ∈ T, zl,t is a binary variable that is set to 1 if the facility l ∈ I is open
during time t ∈ T, and vj,t is binary variable set to 1 if supply to a customer j ∈ J is open during
time period t ∈ T. The revenues and expenses considered in the model are as follows:

• A fixed cost γl for opening the shared facility l ∈ I which are evenly distributed across all
markets.

• A fixed cost σj to initiate supply to the customer j ∈ J.

• Transportation costsωl,j per unit of product supplied from facility l ∈ I to customer j ∈ J.

• Revenue κl,j obtained by shipping the product from facility l ∈ I to customer j ∈ J during
time period t ∈ T.
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The definitions of the various sets introduced in Section 4.3 for the sample application problem
in (4.45) are as follows:

X =
{
x ∈ RI×J×T

+ , v ∈ {0, 1}J×T, z ∈ {0, 1}I×T, c ∈ RA×T
+ r ∈ RA×T

+ : (4.45)
}

Xa =
{
x ∈ RI×Ja×T

+ , v ∈ {0, 1}Ja×T, z ∈ {0, 1}I×T, ca ∈ RT
+, ra ∈ R×T

+ :∑
j∈Ja

κl,jxl,j,t = ra,t t ∈ T;

∑
j∈Ja

ωl,jxl,j,t +
∑
l∈I

γl
(zl,t − zl,t−1)

A
+
∑
j∈Ja

σj(vj,t − vj,t−1) = ca,t t ∈ T;

∑
l∈I

xl,j,t 6 d̂j,tvj,t, j ∈ Ja, t ∈ T;

vj,t 6 vj,t+1 j ∈ Ja, t ∈ T
}

W = {z ∈ {0, 1}I×T : zl,t 6 zl,t+1 l ∈ I, t ∈ T}

The constraints (4.45d) are linking constraints which can be rewritten as∑
a∈A

∑
j∈Ja

xl,j,t 6 ŝl,tzl,t ∀l ∈ I, t ∈ T

to match the structure in (4.4). Table 4.5 provides an overview of the datasets used in the compu-
tational results. For each configuration of facilities, customers and time periods, we generate five
datasets. For each dataset, we generate six separate instances of the problem by distributing the set
of customers evenly into 1-6 markets; see Appendix A for details.

Table 4.5: Overview of the 90 instances used in the computational experiments.

Facilities Time Periods Customers Markets # Instances
15 20 40 1-6 5
15 20 50 1-6 5
20 20 50 1-6 5

Dataset Generation

We provide details about the dataset generation procedure used to construct instances of the sample
application problem described in Section 4.6.

Customer Supply and Demands. We generate the facility supplies from a uniform distribution:
ŝl,t ∼ U(0.8, 1.2), l ∈ I, t ∈ T. We define Ŝt :=

∑
l∈I ŝl,t. We generate increasing demand profiles
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Table 4.6: Discounting rates used in IRR-based production sharing contract.

Tranche IRR Range (%) Profit fraction
k (λk, λk+1] µk

1 (-100, 15] 70%
2 (15, 30] 60%
3 (30, 35] 35%
4 (35,∞) 15%

as follows. For each customer j ∈ J, we generate a time frame uniformly and randomly, from start
time between [1, T2 ] and end time between [ 2T

3 , T ]. We generate demands uniformly according to
{d̂jt} ∼ U(0.8, 1.2), for each time period within the demand time frame, sort them in increasing order,
and scale them by 50Ŝt. The demand d̂j,t for time periods before the start of the time frame is set to
0, while the demand after the end of the time frame is set to the maximum value of the demand for
the customer j ∈ J.

Costs. We use a procedure to generate the four different types of costs incurred at each facility
that ensures that at the end of the planning horizon, the total facility opening cost is of the same
order as the sum of operating, production and fixed costs. We define D̂t :=

∑
j∈J d̂j,t. For each

facility l ∈ I, we generate opening costs uniformly according to γi ∼ (
∑
t∈T D̂t)U(0.8, 1.2). For

each customer j ∈ J, we generate customer initiation costs σj ∼ (
∑
t∈T D̂t
T

)U(0.8, 1.2). For each
customer-facility pair, we generate unit revenues according to κl,j ∼ 50(

∑
t∈T Ŝl
T

)U(0.8, 1.2). For the
transportation costs between each customer-facility pair, we first generate customer and facility
locations, uniformly at random, in a two-dimensional square of size 2. We then set the unit-
transportation costs parameter uniformly according to ωl,j ∼ T × distl,j, where distj,t is the `2-
distance between customer j ∈ J and facility l ∈ L, based on randomly generated locations. The
discounting parameter πt = (0.8)t, ∀t ∈ T is used in the objective function for all formulations.

Profit Tranches. All instances use K = 4 profit tranches. Table 4.6 details the discounting rates µk
and trigger points λk used in our experiments.

Markets. We distribute the customer set J into Amarkets according to the following procedure.
First, we number the customers in J from 1 to J and the markets from 1 to A. The set of customers
that belong to a market a ∈ A is set using Ja := {j ∈ J : mod(j,A) = a + 1}, where “mod” is the
remainder operator.
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Comparing Feasible Solutions

In this section, we compare the quality of the solutions obtained using a multi-start variant of
Algorithm 2 (denoted as HEU+M) with those obtained using the formulation (4.18) (denoted as
TRMIP) for problems with more than 1 market. Both methods ran with a time limit of 2 hours.
In addition to comparing the solution quality after 2 hours of computation, we also measured
the progress made by the methods after 5 minutes and 30 minutes of computation. For the MIP
formulation (4.18), we computed variable bounds mh

a,k,t, Mh
a,k,t and Mp

a,k,t as follows. First, we use
Mx
i,j,t and Mc

a,t to denote the maximum production and maximum expenditure, that is,

Mx
i,j,t = min(ŝl,t,dj,t) l ∈ I, j ∈ J, t ∈ T

Mc
a,t =

∑
j∈Ja

ωl,jMx
l,j,t +

∑
l∈I

γl

A
+
∑
j∈Ja

σj a ∈ A, t ∈ T.

These quantities are then used to compute mh
a,k,t, Mh

a,k,t and Mp
a,k,t using the formulae

Mp
a,k,t =

∑
j∈Ja

κi,j,tMx
i,j,t a ∈ A, k ∈ K, t ∈ T

mh
a,k,t =

∑
s6t

−Mc
a,s

(1 + λk)s
a ∈ A, k ∈ {2 . . .K}, t ∈ T

Mh
a,k,t =

∑
s6t

Mp
a,s

(1 + λk)s
a ∈ A, k ∈ {2 . . .K}, t ∈ T.

For HEU+M, we used a multi-start variant of Algorithm 2, generating each starting point τ0 ∈ T
from the following randomized procedure. First, for each market, we solved the following MIP:

max
∑
t∈T

πtfa,t

subject to (ba, ca, fa,ha,pa, ra) ∈ Ya (4.46)

(ca, ra, xa,w) ∈ LP(Xa),

which is a relaxed version of (4.18) without the linking constraints (4.4). (For each market, (4.46)
is solved in less than a minute.) Let b∗a,k,t denote the optimal values of the binary variables ba,k,t

obtained after by solving (4.46) for a given market a ∈ A. Using this quantity, we generated a
sequence of initial fractional configurations {(τ0)n} as follows:

(τ0
a,k)

n =

t+ φna , when b∗a,k,t − b
∗
a,k,t−1 = 1

T , otherwise,
a ∈ A, k ∈ {2 . . .K}, (4.47)
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Table 4.7: Summary statistics for feasible solution quality at three different time intervals; (a) t=300s
(b) t = 1800s and (c) t = 7200s

Average gap to the best feasible solution (%)
Markets TRMIP HEU+M

t=300 t =1800 t =7200 t=300 t =1800 t =7200
2 3.89 0.01 0.00 0.77 0.17 0.15
3 2.76 0.37 0.00 0.70 0.22 0.18
4 5.34 1.02 0.23 0.67 0.27 0.17
5 8.47 1.39 0.30 0.62 0.33 0.10
6 8.23 1.57 0.79 0.68 0.41 0.25

Average 5.74 0.87 0.26 0.69 0.28 0.17

Maximum gap to the best feasible solution (%)
Markets TRMIP HEU+M

t=300 t =1800 t =7200 t=300 t =1800 t =7200
2 15.12 0.07 0.00 3.12 1.21 1.21
3 8.25 2.20 0.00 1.91 0.86 0.86
4 9.67 4.77 1.01 3.44 2.54 1.83
5 17.75 3.77 1.60 2.51 1.33 0.54
6 23.79 3.30 1.92 2.43 2.43 2.43

Maximum 23.79 4.77 1.92 3.44 2.54 2.43

where φna ∼ U(−.05n, .05n) is a uniform random variable. The algorithm goes through as many
starting points as it can within the two-hour time limit. For each starting point, we searched for a
fractional tranche configuration using Algorithm 2 with α0 = 0.1, αmin = 10−3, δ = 10−3, ε = 10−3,
and N = 20. We round the terminal fractional tranche configuration using (4.38) to obtain a valid
integral tranche configuration, and recover a feasible solution for (4.3) using (4.22). For HEU+M,
we include the time taken for each of the steps described above.

Table 4.7 measures solution quality of a method as a percentage gap to the best found feasible
solution using any method. We define this gap as (BFS-SOL)/BFS where BFS is the best feasible
solution found using any method and SOL is the best feasible solution found using the method
in consideration. Each row of Table 4.7 reports a summary statistic (average or maximum) over
the 15 instances with the same number of markets at three different time intervals; (a) t=300s, (b)
t=1800s and (c) t=7200s. At the end of the two-hour interval, the feasible solutions obtained using
HEU+M are at most 2.43% away from the best feasible solution and on average 0.17% away. In
contrast, the feasible solutions obtained using TRMIP are at most 1.92% away from the best found
feasible solution with an average-case performance of 0.26%.

We make the following observations:
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• TRMIP solves each of the 30 instances with less than or equal to 3 markets. For these instances,
HEU+M is 0.15-0.18% away from the optimal solution for two and three markets, respectively.
For instances with four or more markets, there is a decrease in quality of solutions found
using TRMIP. The gap to the best feasible solution increases from 0.23% for instances with
four markets to 0.79% for instances with six markets. By contrast, the performance of HEU+M
was independent of the number of markets. Our results suggest that HEU+M is suitable for
finding feasible solutions for problems with more markets.

• After 5 minutes of computation, HEU+M consistently outperforms TRMIP, regardless of the
number of markets, finding solutions that are on average only 0.67% away from the best known
feasible solution. Even in the worst case, HEU+M is only 3.44% away from the best known
feasible solution. By contrast, TRMIP could be as much as 23.79% away from the best known
feasible solution. We observed similar results after 30 minutes, for instances with three to six
markets.

We conclude that HEU+M is the preferred choice for obtaining feasible solutions of (4.3) when the
number of markets is greater than three, while TRMIP is preferable when the number of markets is
at most three. HEU+M is also suitable for finding high quality feasible solutions quickly.

Comparing Solution Bounds

We now compare the solution bounds obtained using Algorithm 3 (DD+LP), Algorithm 4 (D+LP),
and TRMIP for problems with two to six markets. We measured the progress made by each of the
algorithms after 30 minutes and two hours of computation.

For DD+LP, we run Algorithm 3 with η0
w = 4.5, η0

d = 1, and εtol = 10−5 until the termination
criterion is met or the chosen time limit is reached. The initial dual multipliersΘ0 are set to zero,
while the initial primal variables are set to the solution obtained using HEU+M with a time limit
of 300 seconds. In reporting the results, we include the time taken to compute the initial primal
and dual solutions. For Algorithm 3 (DD+LP), each iteration generates a set of dual multipliersΘi

and a valid solution bound. At the end of each iteration, we keep track of the best (lowest) bound
obtained from any of the previous iterations of DD+LP.

We run Algorithm 4 (D+LP) with parameters ρ0 = 2, η0
d = 1, εt = 10−3, ρd = 0.9 and ρm = 10−2

until the termination criterion is met or the time limit is reached. We set the initial dual multipliers
and primal variables using the same procedure as that used for DD+LP. For D+LP we compute a
valid solution bound, from the dual multipliers, using the procedure described in Section 13. We
perform this procedure at t = 1600s and t = 7000s to ensure that a valid bound is available before
the t = 1800s and t = 7200s time stamps. To eliminate bias, we chose parameters η0

w, η0
d, ρ0, and ρd

to be the values that yield the best performance at the end of two hours of computation, from a grid
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Table 4.8: Summary statistics for solution bound quality at two different time intervals; (a) t = 1800s
and (b) t = 7200s

Average gap to the best feasible solution (%)
Markets TRMIP DD+LP D+LP

t=1800 t =7200 t =1800 t=7200 t =1800 t =7200
2 0.23 0.01 2.41 2.13 2.87 2.17
3 14.93 0.03 3.24 2.57 3.34 2.59
4 43.25 11.65 4.49 2.99 3.81 2.92
5 66.43 36.77 6.04 3.54 3.93 3.05
6 81.20 51.86 8.80 4.74 4.60 3.53

Average 41.21 20.06 4.99 3.19 3.71 2.85

Maximum gap to the best feasible solution (%)
Markets TRMIP DD+LP D+LP

t=1800 t =7200 t =1800 t=7200 t =1800 t =7200
2 3.25 0.12 3.75 3.39 6.69 3.50
3 40.20 0.43 5.57 3.85 5.97 4.03
4 59.60 24.64 6.26 4.61 6.00 4.33
5 79.00 49.18 10.13 5.90 5.92 4.99
6 104.05 64.10 15.15 8.05 7.03 5.69

Maximum 104.05 64.10 15.15 8.05 7.03 5.69

of parameters on a training dataset that is independent of the datasets used to report the results in
this section. (We generated the training dataset using the same procedure as the other datasets.)

We report quality of solutions produced by TRMIP, DD+LP, and D+LP in Table 4.8, as a percent-
age gap to the best found feasible solution. We calculate this gap from the formula (BFS-BD)/BFS,
where BFS is the best feasible solution found with any method and BD is the best bound obtained by
using the method under consideration. Each row in Table 4.8 reports a summary statistic (average
or maximum) over fifteen instances measured at the two time intervals of thirty minutes and two
hours.

At the end of the two-hour time limit, we observe that both DD+LP and D+LP produce bounds
that are on average, 2-5% away from the best known feasible solution, figures that are more than an
order of magnitude better than TRMIP. We also observed that D+LP and DD+LP produce bounds
that were in 2-9% range at the end of 1800s, significantly better than the bounds obtained by TRMIP,
both for t = 1800s and t = 7200s. Our results suggest that TRMIP is not suitable for computing
solution bounds for (4.3). When comparing the two decomposition algorithms DD+LP and D+LP,
we found that the performance of D+LP is more consistent when number of markets increases.
Both DD+LP and DD+LP produce bounds of about 2% for instances with fewer than three markets.
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However, on instances with four or more markets, the average and worst case performance of D+LP
improves on that of DD+LP. Most notably, for the six-market instances, D+LP is 33% better than
DD+LP in average-case performance. At t = 1800s, the bounds produced by D+LP for instances
with four to six markets is 50% better than DD+LP for the same computation time.

We conclude that D+LP is the preferred choice of algorithms to obtain solution bounds for
problems with three or more markets, while TRMIP is competitive only when the number of
markets is two.

4.7 Concluding Remarks

We have proposed formulations, solution techniques, and algorithms for operational planning
problems influenced by IRR-based PSCs. We presented a natural MIP formulation for the problem
and a search algorithm based on a novel continuous domain formulation. We also proposed
market-based decomposition methods to compute solution bounds. Our experiments, on a sample
application problem, demonstrated that the MIP formulation was suitable for problems with three
or fewer markets. When the number of markets is greater than three, our continuous-domain search
algorithms are suitable for finding good feasible solutions and our decomposition algorithm was
suitable for finding solution bounds. We conclude that a combination of the continuous domain
search algorithms and market-based decomposition schemes is a suitable integrated approach for
operational planning models involving IRR-based PSCs with multiple markets.
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5 approximating mip formulations for combinatorial problems via
approximate lp rounding

Many important problems in applications such as health-care, biology finance, and operations
research are NP-hard. Although it is difficult to solve these NP-hard problems exactly, there may
still be ways to efficiently compute solutions that are ‘good enough’.There has been a lot of successful
research in developing effective heuristics to find ‘good enough’ solutions to NP-hard problems.
However, such approaches are less appealing because they do not offer any theoretical bounds
on runtime and solution quality. In contrast, the field of approximation algorithms is focussed on
developing a theoretical framework to design algorithms that find provably near-optimal solutions
to NP-hard problems. Good approximation algorithms can get to within a constant factor of an
optimal solution. Sometimes, there are even better approximation algorithms that get arbitrarily
close to an optimal solution by trading off computational effort with solution quality. Unfortunately,
there are still several classes of problems for which no known polynomial-time algorithms get to
within a constant factor of an optimal solution. Vazirani [101] provides an overview of the theory
and algorithms used in the field of approximation algorithms.

Approximation algorithms for NP-hard problems are either combinatorial or LP-based. The
combinatorial algorithms include greedy algorithms, randomized algorithms and reduction to
problems with known poly-time algorithms. On the other hand, LP-based algorithms broadly
fall into two categories; LP-rounding and primal dual algorithms. In this work, we focus on
approximation algorithms based on LP-rounding. LP-rounding based approximation schemes [101,
chs. 12-26] have been successfully used for a wide range of NP-hard problems in applications like
machine-learning [85, 112, 57, 84], computer vision [53, 16, 24], natural language processing [14, 54],
statistics [7, 99]. An LP-rounding scheme consists of the following three-steps: First, we construct an
integer (binary) linear program (IP) formulation of a given problem. Second, we relax the IP to a
linear program (LP) by replacing the constraints x ∈ {0, 1} by x ∈ [0, 1]. We then solve the LP. Finally,
we round the solution of the LP to obtain a feasible solution for the original IP problem and hence a
feasible solution for the original problem. LP rounding is known to work well on a problems such
as set-cover, set packing, multiway-cut, facility location etc. and comes with theoretical guarantees
for runtime and solution quality.

One of the main reasons for the success of LP-rounding schemes has been that many NP-hard
problems have natural IP formulations whose objectives are bounded by the LP-relaxation of these
formulations. However, the Achilles’ heel of LP-rounding is that it requires solutions of LPs of
possibly extreme scale. Despite decades of work on LP solvers, including impressive advances
during the 1990s, commercial codes such Cplex or Gurobi may not be capable of handling problems
of the required scale. In this work, we develop a large-scale approximate LP solver suitable for
use in LP-rounding based approximation schemes. Our intuition is that in LP rounding, since we
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ultimately round the LP to obtain an approximate solution of the combinatorial problem, a crude
solution of the LP may suffice. Hence, an approach that can find approximate solutions of large LPs
quickly may be suitable, even if they are inefficient for obtaining highly accurate solutions.

Contributions. We highlight three main technical contributions of this work. First, we build
on the theory of approximation algorithms and propose a suitable notion of an approximate LP
solution. We define x̂ to be an (ε, δ) approximate LP solution it is ε away (in the infinity norm)
from the feasible region of the LP and its objective is a relative factor of δ away from the optimal
objective of the LP. We show that for a class of rounding algorithms, used in NP-hard problems like
vertex cover, set cover, set packing, and multiway-cut, we can successfully round (ε, δ) approximate
LP solutions. As a second contribution, we show that one can approximately solve large LPs
using a convex quadratic programming (QP) approximation that can be solved efficiently using
asynchronous parallel algorithms [70, 59]. The convergence analysis in [89] precisely quantifies
the relationship between the QP approximation and the LP. As a third contribution, we derive
bounds on runtime as well as worst-case approximation ratios for our rounding schemes. Our
experiments demonstrate that on three different classes of combinatorial problems, our approach,
called Thetis, can outperform Cplex (a state-of-the-art commercial LP and IP solver) by up to an
order of magnitude in runtime, while achieving comparable solution quality.

Related Work. The use of approximate LP solutions for the purposes of LP-rounding is a relatively
recent advancement. We identify two works that are most similar to ours. The first is in the
computation of the maximum a posteriori probability (MAP) estimate; a task that commonly arises
in the field of Bayesian statistics. MAP estimation problems can solved using the LP-relaxation of a
combinatorial problem [85, 79]. Ravikumar et. al [79] proposed approximate LP-rounding schemes
for iterative LP solvers to facilitate MAP inference in graphical models. In contrast, we propose to
use stochastic descent methods to solve a QP relaxation of the LP; this allows us to take advantage
of recent results on asynchronous parallel optimization methods [70, 59]. The second related work
is by Manshadi et al. [62], which focuses on parallel LP-rounding based algorithms for packing and
covering problems. The main difference between their approach and ours is that, our results apply
to more general LP-relaxations, including partitioning problems like multiway-cut. Additionally,
the runtime of our algorithm is less sensitive to the approximation error in the LP. For an error ε,
the bound on runtime of the algorithm in [62] grows as ε−5, while the bound on our algorithm’s
runtime grows as ε−2.

Outline. This rest of this chapter is organized as follows. In Section 5.1, we review the theory of
LP-rounding based approximation algorithms for NP-hard combinatorial problems. In Section 5.2,
we discuss how one can perform LP-rounding with approximate LP solutions. In Section 5.3, we
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discuss how these approximate LP solutions can be computed using a QP formulation. In Section 5.4,
we discuss implementation details of our QP solver. Our numerical experiments, in Section 5.5
test the effectiveness of our approximate LP-rounding schemes on a range of problems of practical
interest. We conclude with remarks in Section 5.7.

5.1 Background

For a minimization problem Φ, an algorithm ALG is an α-factor approximation for Φ, for some
α > 1, if any solution obtained by ALG has a cost at most α times the value of an optimal (lowest
cost) solution. The value of αmay depend on the input size of the problem. For some problems,
like vertex cover, there is a constant factor (α = 2) approximation scheme [101] while for others, like
set cover it can be as large as a O(logN) factor approximation [92] where N is the number of sets.

An LP-rounding based approximation scheme for Φ consists of three main steps. First, we
construct a binary IP formulation of Φ which we denote as “P”. This step is typically easy to do but
P is as hard to solve as the original problem Φ. Second, we relax the constraints in P to an LP by
replacing the binary variables with continuous variables that are restricted to lie in the interval [0, 1].
We then solve LP(P). The relaxed formulation is LP-relaxation of P. Finally, we round the solution of
LP(P) to obtain feasible solution to P. The solution constructed after the round phase is a feasible
integral solution for the original IP formulation and hence an upper bound on the cost of an optimal
solutionΦ. The optimal objective of the LP-relaxation forms a natural lower bound on the optimal
cost ofΦ. Any feasible solution of the LP(P) is called a fractional solution of the set cover problem.
The approximation guarantee is established by comparing the cost of a fractional solution and the
cost of a feasible integral solution. We formalize this discussion by introducing the notion of an
integrality gap of LP(P).

Consider a in instance I of the IP formulation P for the minimization problem Φ. Let OPTf(I)
denote the cost of an optimal fractional solution of instance I of LP(P). Let OPT(I) denote the cost
of an optimal integral solution of the same instance I of P. For any given minimization problemΦ,
we define the integrality gap, as:

ρ := sup
I

OPT(I)
OPTf(I)

.

as the worst case ratio (for any instance I of the formulation P) between the cost of an optimal solution
of LP(P) and an optimal integral solution of P. The above definition suggests that there exists an
instance I ofΦ such that OPT(I) is at least a factor of ρ away from OPTf(I). Hence, any scheme that
uses OPTf(I) as a lower bound for OPT(I) cannot guarantee an approximation factor better than ρ.
In problems like vertex cover, there exists rounding schemes that achieve approximation factors
equal to the integrally gap i.e α = ρ.

We now review the construct,relax/solve, and round phases of LP-rounding schemes for three
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Problem family Approx factor Applications
Set Covering f [47] Classification [13], Multi-object tracking [112]
Set Packing es+ o(s) [8]. MAP-inference [85], Natural language [54]

Multiway-cut 3/2 − 1/k [18]. Computer vision [16], Entity resolution [57].
Graphical Models Heuristic Semantic role labeling [84], Clustering [99]

Table 5.1: LP-rounding schemes considered in this chapter. The parameter f refers to the frequency
of the most frequent element; s refers to s-column sparse matrices; and k refers to the number of
terminals. e refers to the Euluer’s constant.

combinatorial problems- set covering, set packing, and multiway-cuts. Table 5.1 provides an
overview of the approximation factors for the best known LP-rounding schemes along with practical
applications for each of these problems.

Set Cover

Given a universe U of n elements, a collection of m subsets S = {S1, . . .Sm}, a nonnegative cost
function c : S→ R+. The set cover problem is the search for the lowest cost sub-collection of S that
covers the entire universe U. We denote f to be the maximum number of sets in S that any given
element belongs to.

In the construct phase, we formulate set cover as an IP by introducing a set of binary variables
xs ∈ [0, 1], ∀s ∈ S. The binary variable is set to 1 if the set s ∈ S is selected. An IP formulation for
the minimum cost set cover problem is:

min
∑
s∈S

csxs (5.1)

subject to
∑

s∈S:e∈s
xs > 1 ∀e ∈ U,

xs ∈ {0, 1} ∀s ∈ S

In the relax/solve phase, we relax the integrality conditions on the variables xs, ∀s ∈ S in (5.1) to the
following:

min
∑
s∈S

csxs (5.2)

subject to
∑

s∈S:e∈s
xs > 1 ∀e ∈ U,

xs ∈ [0, 1] ∀s ∈ S

In the round phase, we generate a valid set cover by simply choosing the set s ∈ S whose fractional
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solution x∗s > 1
f
. It is easy to see that the set cover generated by such a rounding scheme is of

cost no more than f times the cost of the fractional solution. If the fractional solution chosen for
rounding is an optimal solution of (5.2), then we arrive at a f-factor approximation scheme for set
cover. Algorithm 5 details the f-factor LP-rounding scheme for the set cover problem [47]. Vazirani
[101] provides an instance of set cover with an integrality gap of f which shows that Algorithm 5 is
tight. A special case of the set cover problem with f = 2 is the vertex cover problem.

Algorithm 5: An f-factor LP-rounding based approximation scheme for set cover
Data: A universe U of n elements, a collection ofm subsets S = {S1, . . .Sm}, a nonnegative

cost function c : S→ R+.
Result: A valid set cover C whose cost is no more than f times the cost of the minimum cost

set cover.
1 Find x∗, an optimal LP solution to (5.2).
2 C = φ
3 for s ∈ S do
4 if x∗s > 1/f then
5 C← C ∪ s

6 return C

Set Packing

Given a universe U of n elements, a collection of m subsets S = {S1, . . .Sm}, a nonnegative cost
function c : S → R+. The set packing problem is the search for the maximum cost collection of
mutually disjoint sets. Let A denote a matrix whose entries Ais = 1 if the element i ∈ U is present
in set s ∈ S. We denote xs as a binary variable that is set to 1 if the set s ∈ S is chosen in the packing.
The set packing problem can be formulated as:

max
∑
s∈S

csxs (5.3)

subject to
∑
s∈S

Aisxs 6 1 ∀i ∈ U

xs ∈ {0, 1} ∀s ∈ S

In its full generality, the set packing problem can be approximated to within a factor of n but is
NP-hard to approximate within a factor of n1−ε [45]. However, a commonly considered case for set
packing is the k-column sparse set packing problem in which every element is present in no more
than k sets. Bansal et al. [8] proposed an ek+ o(k) factor approximation of the k-column sparse set
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packing problem based on the following IP formulation which has stronger LP-relaxation than (5.3):

max
∑
s∈S

csxs (5.4)

subject to
∑
s∈S

Aisxs 6 1 ∀i ∈ U,∑
s∈B(i)

xs 6 1 ∀i ∈ U,

xs ∈ {0, 1} ∀s ∈ S.

Here, B(i) := {s ∈ S | Ais > 1
2 } denotes the set of items marked as “big” because they use up more

than half of the set s ∈ S. The constraints
∑
s∈B(i) xs 6 1, ∀i ∈ U ensure that there can be no

more than two big sets chosen for a given element i ∈ U. There is a ek+ o(k) factor randomized
rounding algorithm (see Algorithm 6) due to [8]. The integrality gap of (5.4) is atleast 2k− 1 [8]. The
maximum independent set problem, is a special case of set packing where the k-column sparsity
refers to the maximum degree of the graph.

Algorithm 6: A ek+ o(k)-factor randomized LP-rounding algorithm for set packing
Data: A universe U of n elements, a collection ofm subsets S = {S1, . . .Sm}, a nonnegative

cost function c : S→ R+.
Result: A valid packing C whose cost is no less than ek+ o(k)- times the cost of the

maximum cost set packing.
1 Compute the optimal solution x∗ of the LP-relaxation of (5.4).
2 Chose set s ∈ S with probability x∗s

kθ
. Let C ⊆ S denote the chosen sets.

3 For each set s ∈ C and element a ∈ U, let Ea,s denote the event that the sets
{s2 ∈ C : wa,s2 > wa,s} have a total weight (with respect to element a) exceeding 1. Mark s for
deletion if Ea,s occurs for any a ∈ s.

4 Delete all sets from s ∈ C that are marked for deletion.

Multiway-Cuts

Let G(V ,E) denote a graph where V is the set of vertices and E ⊆ V × V is the set of edges. Given
a subset of vertices V1,V2, . . .Vk called terminals, a k-way cut is a set of edges that disconnects all
terminals. Given a nonnegative cost function c : E → R+, a k-way cut of minimum cost is the
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Algorithm 7: An 3/2 − 1/k-factor randomized LP-rounding algorithm for multi-way cut.
Data: A graph G(V ,E), a subset of vertices V1,V2, . . .Vk and a nonnegative cost function

c : E→ R+

Result: A minimum cost k-way cut.
1 Compute an optimal solution x of the LP-relaxation of (5.6).
2 Ei ← {(u, v) ∈ E : xiu 6= xiv} ∀i ∈ {1 . . .k}.
3 Wi ←

∑
u,v∈Ei cu,v(

∑k
j=1 x

i
u,v) ∀i ∈ {1 . . .k}.

4 Renumber the terminals so thatWk is the largest amongW1 . . .Wk.
5 Pick ρ ∈ (0, 1) uniformly at random and σ ∈ {(1, 2 . . .k− 1,k), (k− 1,k− 2 . . . 1,k)
6 For i = 1 . . .k− 1: Vσ(i) ← B(si, ρ) −

⋃
j6i Vσ(j) where B(si, ρ) := {v ∈ V : xiv > ρ}.

7 Vk ← V − ∪i<kVi.
8 Let C be the set of edges that run between the partitions V1 . . .Vk.
9 return C

solution to the multiway-cut problem. Călinescu et al. [18] formulated the multiway-cut problem as:

min 1
2
∑
u,v∈E

cu,v||xu − xv||1

subject to xv ∈ ∆k ∀v ∈ V ,

xv ∈ {0, 1}k ∀v ∈ V (5.5)

where ∆k := {x ∈ Rk :
∑k
i=1 xi = 1, x > 0} is the set of simplex constraints in k dimensions.

Although it might appear that the formulation in (5.5) is non-linear, one can easily linearize (5.5) as
follows:

min 1
2

k∑
i=1

∑
u,v
cu,vx

i
u,v

subject to xv ∈ ∆k ∀v ∈ V ,

xiu,v > x
i
v − x

i
u ∀u, v ∈ E, i ∈ {1 . . .k},

xiu,v > x
i
u − xiv ∀u, v ∈ E, i ∈ {1 . . .k},

xiu,v ∈ [0, 1] ∀u, v ∈ E, i ∈ {1 . . .k},

xv ∈ {0, 1}k ∀v ∈ V . (5.6)

Algorithm 7 is a 3/2 − 1/k factor approximation for multiway-cut problem [18]. Freund and Karloff
[34] provide a family of instances whose integrality gap is 8/(7 + 1

k−1 ) which is the best known
lower bound on the integrality gap of the LP-relaxation of (5.6).
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5.2 Approximate LP rounding

In this section, we describe how approximate LP solutions can be used in LP-rounding schemes
We use the vertex cover problem as a running example, for it is the simplest non-trivial setting that
exposes the main ideas of this work.

Let G(V ,E) denote a graph with vertex set V undirected edges E ⊆ (V × V). Let cv denote a
nonnegative cost associated with each vertex v ∈ V . A vertex cover of a graph is a subset of V such
that each edge e ∈ E is incident to at least one vertex in this set. The minimum-cost vertex cover is
the one that minimizes the sum of terms cv (summed over the vertices v) belonging to the cover.
The vertex cover problem is a special case of the set cover problem and can be formulated as:

min
x

∑
v∈V

cvxv subject to xu + xv > 1 for (u, v) ∈ E and xv ∈ {0, 1} for v ∈ V . (5.7)

where xv ∈ [0, 1], ∀v ∈ V is a binary variable set to 1 if the vertex v ∈ V is selected in the vertex cover
and 0 otherwise. The LP-relaxation of (5.7) is:

min
x

∑
v∈V

cvxv subject to xu + xv > 1 for (u, v) ∈ E and xv ∈ [0, 1] for v ∈ V . (5.8)

Algorithm 5 is a 2-factor approximation algorithm for vertex cover. We note here an important
property: The rounding algorithm can generate feasible integral solutions while being oblivious of
whether the fractional solution is the optimal solution of (5.8). We formally define the notion of an
oblivious rounding scheme as follows.

Definition 5.1. For a minimization problem Φ with an IP formulation P whose LP relaxation is denoted by
LP(P), a γ-factor ‘oblivious’ rounding scheme converts any feasible point xf ∈ LP(P) to an integral solution
xI ∈ P with cost at most γ times the cost of LP(P) at xf.

Given a γ-factor oblivious algorithm ALG forΦ, one can construct a γ-factor approximation algorithm
forΦ by using ALG to round an optimal fractional solution of LP(P). When we have an approximate
solution for LP(P) that is feasible for this problem, rounding can produce an α-factor approximation
algorithm for Φ for a factor α slightly larger than γ, where the difference between α and γ takes
account of the inexactness in the approximate solution of LP(P). Many LP-rounding schemes,
including the ones in Table 5.1, are oblivious.

Approximate Solutions of LPs. Consider the LP in the following standard form:

min cTx subject to Ax = b, x > 0, (5.9)
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where c ∈ Rn, b ∈ Rm, and A ∈ Rm×n and its corresponding dual

max bTu subject to c−ATu > 0. (5.10)

Let x∗ denote an optimal primal solution of (5.9). Let x̂ denote an approximate LP solution that may
be infeasible and have objective value different from the optimum cTx∗. sub-optimality of x̂.

Definition 5.2. A point x̂ is an (ε, δ)-approximate solution of the LP (5.9) if x̂ > 0 and there exists constants
ε > 0 and δ > 0 such that

‖Ax̂− b‖∞ 6 ε and |cT x̂− cTx∗| 6 δ|cTx∗|

.

Definition 5.1 refers to approximate LP solutions that are ε away from a feasible solution in terms of
the infinity norm and a factor of δ away from the optimal objective in relative terms. We show in
Lemma 5.3 that a γ-factor oblivious rounding scheme can round a (0, δ) approximate LP solution to
produce a feasible integral solution whose cost is no more than γ(1 + δ) times an optimal solution
of the P. The factor γ comes from nature of the rounding algorithm and the extra δ factor arises
because the rounding algorithm does not have access to an optimal fractional solution.

Lemma 5.3. Given an γ-factor oblivious rounding algorithm ALG for a minimization problemΦ based on a
(0, δ) approximate solution of LP(P), we can construct a γ(1 + δ) approximation algorithm for Φ.

Proof. Let x̂ denote a (0, δ) approximate LP solution of LP(P) of cost OPT(x̂). LetC denote the cost of
the feasible integral solution produced by rounding x̂ using ALG. Since ALG is a γ-factor oblivious
algorithm, we have that

C 6 γOPT(x̂).

From the δ sub-optimality of x̂, we have that

OPT(x̂) 6 (1 + δ)OPT.

Hence, the result C 6 (1 + δ)OPT follows.

To cope with the infeasibility, we convert an (ε, δ) approximate solution to a (0, δ̂) approximate
solution where δ̂ is not too large. For the vertex cover problem OPT(5.1), Sridhar et al. [89] shows
the following result. (Here, Π[0,1]n(·) denotes projection onto the unit hypercube in Rn.)

Lemma 5.4. Let x̂ be an (ε, δ) approximate solution to the linear program (5.8) with ε ∈ [0, 1). Then,
x̃ = Π[0,1]n((1 − ε)−1x̂) is a (0, δ(1 − ε)−1)-approximate solution.
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Since x̃ is a feasible solution for (5.2), the oblivious rounding scheme in Section 5.1 results in
an 2(1 + δ)(1 − ε)−1 factor approximation algorithm. In general, constructing (0, δ̂) from (ε, δ)
approximate solutions requires reasoning about the structure of a particular LP. Sridhar et al. [89]
prove statements analogous to Lemma 5.4 for set-packing, set-covering, and multiway-cut problems.
We omit the details of these results.

5.3 Computing Approximate Solutions to LPs

Consider the following regularized quadratic penalty approximate formulation of the LP defined
in (5.9), parameterized by a positive constant β, whose solution is denoted by x(β):

x(β) := arg min
x>0

fβ(x) := c
Tx− ūT (Ax− b) +

β

2
‖Ax− b‖2 +

1
2β
‖x− x̄‖2, (5.11)

where ū ∈ Rm and x̄ ∈ Rn are arbitrary vectors. In practice, ū and x̄may be set to zero, or chosen
to be approximations to the dual and primal solutions of (5.9), or generated as a part of an overall
scheme like the augmented Lagrangian method. The results in [89] show that an exact solution
to the QP approximation defined in (5.11) is an approximate solution of (5.9) in accordance with
Definition 5.2. In practice, since we cannot solve (5.11) exactly, it is also the case that an approximate
solution of (5.11) can still serve as an approximate solution of (5.9).

Perturbation Results

We now discuss the relationship between the unique solution x(β) of the QP in (5.11) and an
optimal solution of the LP in (5.9). The quality of the approximation in (5.11) depends strongly on
the conditioning of underlying LP (5.9), a concept that was studied by Renegar [80]. Denoting the
data for problem (5.9) by d := (A,b, c), we consider first ∆d := (∆A,∆b,∆c) of smallest norm such
that the linear program defined by d+ ∆d is primal infeasible. The primal condition number δP is
the infimum of the ratios ‖∆d‖/‖d‖ taken over all such vectors ∆d. The dual condition number δD
is defined analogously. Clearly both δP and δD are in the range [0, 1]; smaller values indicate poorer
conditioning. Sridhar et al. [89] prove the following result.

Theorem 5.5 (Theorem 4 of [89]). Suppose that δP and δD are both positive, and let (x∗,u∗) be any
primal-dual solution pair for (5.9), (5.10). If we define C∗ := max(‖x∗ − x̄‖, ‖u∗ − ū‖), then the unique
solution x(β) of (5.11) satisfies

‖Ax(β) − b‖ 6 (1/β)(1 +
√

2)C∗, ‖x(β) − x∗‖ 6
√

6C∗.
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If in addition we have

β >
10C∗

‖d‖min(δP, δD)
,

then we have
|cTx∗ − cTx(β)| 6

1
β

[
25C∗

2δPδD
+ 6C2

∗ +
√

6‖x̄‖C∗
]

.

If β is large enough, the unique optimal solution x(β) of the QP (5.11) is an (ε, δ) approximate
solution for the LP (5.9) where

ε =
(1 +

√
2)C∗

β
and δ = 1

β

[
25C∗

2δPδD
+ 6C2

∗ +
√

6‖x̄‖C∗
]

.

In practice, we solve (5.11) approximately, using an algorithm whose complexity depends on the
threshold ε̄ for which the objective is accurate to within ε̄. That is, we seek x̂ such that

fβ(x̂) − fβ(x(β)) 6 ε̄.

Since fβ is strongly convex with modulus β−1, we have that

β−1‖x̂− x(β)‖2 6 fβ(x̂) − fβ(x(β)) 6 ε̄.

Sridhar et al. [89] show that for an appropriate choice of ε̄, we obtain

|cT x̂− cTx∗| 6
1
β

[
25C∗
δPδD

+ 6C2
∗ +
√

6‖x̄‖C∗
]

, ‖Ax̂− b‖ 6 1
β

[
(1 +

√
2)C∗ +

25C∗
2δPδD

]
.

The following result from Sridhar et al. [89] is almost an immediate consequence.

Theorem 5.6 (Theorem 5 of [89]). Suppose that δP and δD are both positive and let (x∗,u∗) be any
primal-dual optimal pair. Suppose that C∗ is defined as in Theorem 5.5. Then for any given positive pair
(ε, δ), we have that x̂ satisfies the inequalities in definition 5.2 provided that β satisfies the following three
lower bounds:

β >
10C∗

‖d‖min(δP, δD)

β >
1

δ|cTx∗|

[
25C∗
δPδD

+ 6C2
∗ +
√

6‖x̄‖C∗
]

β >
1
ε

[
(1 +

√
2)C∗ +

25C∗
2δPδD

]
.

In summary, the results from Sridhar et al. [89] suggest that if β is large enough, the QP approxima-
tion (5.11) can be used to compute (ε, δ) optimal solutions for (5.9) where ε ∼ β−1 and δ ∼ β−1 (ignor-
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Instance PV (M) NNZ (M) Time (seconds)
frb59-26-1 0.12 0.88 1410.7
frb59-26-2 0.12 0.88 1371.7
frb59-26-3 0.12 0.88 -
Amazon 0.56 2.91 462.8

DBLP 0.52 2.78 427.7
Google+ 0.77 5.06 -

Table 5.2: Summary of wall-clock time required by Cplex-QP to solve the QP-approximation (5.11)
for the vertex cover problem. Cplex-QP is run with a time limit of one hour and parallelized over 32
cores, with ‘-’ indicating that the code reached the time limit. PV is the number of primal variables
while NNZ is the number of nonzeros in the hessian matrix (both in millions).

ing the dependence on δP and δD). For general LPs of the form (5.9), both δD and δP can easily be 0.
However, this is not the case for the combinatorial problems of interest in this work. Sridhar et al. [89]
provide estimates of (δP, δD) in detail for vertex cover. For an instance of vertex cover with n nodes
andm edges, they show that δ−1

P 6 2n−1/2(2m+n)−1/2 and δ−1
D = (2m+n)−1/2. Setting x = ~1 and

u = ~0, gives that C∗ 6
√
m for vertex-cover. Together, we get that β = O(m3/2n(min{ε, δ|cTx∗|})−1).

Similar results can be shown for set covering, set packing and multiway-cut problems.

Solving the QP Approximation

Recently, there has been a lot of interest in developing algorithms and software tailored at solving
large QP problems of the form (5.11). Problem sizes in fields like machine learning, social-network
analysis, and marketing are already in the giga-byte scale and are predicted to grow even more.
High-quality commercial QP solvers, such as Cplex, Gurobi and Knitro are not known to scale
well to large problems. We present evidence to support this claim in Table 5.2. We solved the
QP-approximation (5.11) of the vertex cover problem with β = 0.1 using Cplex-QP (a state-of-the-art
commercial QP solver). Section 5.5 provides details of the system setup and instances used to
produce these results. Table 5.2 provides a summary of problem sizes and wall-clock time required
to solve these instances. Our results suggest that commercial QP solvers do not scale well for
problems of interest in this work.

We propose the use of the SCD to solve (5.11). Several constrained and unconstrained variants of
this method have been proposed and analyzed under different conditions [69, 95, 11, 111]. During
iteration j of SCD (see Algorithm 6), we choose a coordinate component i ∈ {1, 2, . . . ,n} and take a
step along the partial gradient of the coordinate component i of xj to obtain the next iterate xj+1.
The update rule for SCD is given by:

[xj+1]i(j) ← max
(

0, [xj]i(j) − (1/Lmax)[∇fβ(xj)]i(j)
)
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Algorithm 8: SCD method for (5.11)
Data: Initial point x0 ∈ Rn.
Result: Solution x∗ for (5.11).

1 j← 0
2 while converged do
3 Choose i(j) ∈ {1, 2, . . . ,n} randomly with equal probability
4 Define xj+1 from xj by setting [xj+1]i(j) ← PC([xj]i(j) − (1/Lmax)[∇fβ(xj)]i(j)), leaving

other components unchanged
5 j← j+ 1
6 return xj

where Lmax := β(maxi=1,2,...,nA
T
:iA:i) + β

−1 and A:i denotes the ith column of A. The algorithm
terminates when

‖xj+1 − max(0, xj −∇fβ(xj))‖ 6 εt

where εt > 0 is a threshold close to 0. The proof of convergence, in expectation, of this extremely
simple and basic procedure is a special case of the theory in [59] and depends on the following
constants:

l :=
1
β

, R := sup
j=1,2,...

‖xj − x(β)‖2, (5.12)

Here E(·) denotes expectation over all the random variables i(j) indicating the update indices chosen
at each iteration.

Theorem 5.7. For Algorithm 6 we have

E‖xj − x(β)‖2 +
2
Lmax

E(fβ(xj) − f∗β) 6
(

1 −
l

n(l+ Lmax)

)j(
R2 +

2
Lmax

(fβ(x0) − f
∗
β)

)
,

where f∗β := fβ(x(β)). We obtain high-probability convergence of fβ(xj) to f∗β in the following sense: For
any η ∈ (0, 1) and any small ε̄, we have

P(fβ(xj) − f
∗
β < ε̄) > 1 − η

provided that

j >
n(l+ Lmax)

l

∣∣∣∣log Lmax

2ηε̄

(
R2 +

2
Lmax

(fβ(x0) − f
∗
β)

)∣∣∣∣
Worst-Case Complexity Bounds For Vertex Cover. We combine the analysis in this section to
derive a worst-case complexity bound for our approximate LP solver. Supposing that the columns
of A have norm O(1), we have from (5.12) that l = β−1 and Lmax = O(β). Theorem 5.7 indicates
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that we require O(nβ2) iterations to solve (5.11) (modulo a log term). For the vertex cover problem,
we use the values to β described in Section 5.3 to provide a complexity estimate of O((nm)3/ε̂2)

(assuming m > n), where ε̂ = min(ε, δcTx∗). In order to obtain the desired accuracy in terms of
feasibility and function value of the LP (captured by ε̂) we need to solve the QP to within a different,
tighter tolerance, quantified by ε̄. Both tolerances are related to the choice of penalty parameter β
in the QP. Ignoring here the dependence on dimensions, we note the relationships β ∼ ε̂−1 (from
theorem 5.6) and ε̄ ∼ β−3 ∼ ε̂3. Expressing all quantities in terms of ε̂, and using theorem 5.7 we see
an iteration complexity of ε̂−2 for SCD (ignoring log terms). The following lemma is an immediate
consequence.

Lemma 5.8. Given δ > 0 and ε > 0, there is a O((nm)3/ε̂2) algorithm for a non-trivial instance of the
vertex cover problem in (5.7), with an approximation factor 2(1 + δ)(1 + ε)−1 where ε̂ = min(ε, δcTx∗)
and x∗ is an optimal solution of (5.8).

The linear convergence rate of SCD is instrumental in the result in Lemma 5.8. By contrast, standard
variants of stochastic-gradient descent (SGD) applied to the QP yield poorer complexity. From
Nemirovski et al. [68], it follows that for diminishing-step or constant-step variants of SGD, we see
complexity of ε̂−7, while for robust SGD, we see ε̂−10. (Besides the inverse dependence on ε̄ or its
square, there is a contribution of order ε̂−2 from the conditioning of the QP).

5.4 Implementation Details

In section, we discuss two main enhancements that improve the efficiency of our LP-rounding
scheme outlined in Section 5.2 to make it suitable for practical applications. The first is the use of an
augmented Lagrangian framework rather than the one-shot approximation by the QP in (5.11) and
the second is an asynchronous parallel implementation of Algorithm 6.

Augmented Lagrangian

The quadratic-penalty approach can be extended to an augmented Lagrangian approach, in which
a sequence of problems of the form (5.11) are solved, with the estimates x̄ and ū of primal and dual
solutions and possibly the penalty parameter β are updated between iterations. The advantage of
such an approach is that (5.9) can be solved without increasing the penalty parameter β to a very
large value, thereby avoiding some of the ill-conditioning observed with quadratic penalty methods.
Such a “proximal method of multipliers” for LP was described in [110]. The algorithm generates a
sequence {x̄k} and {ūk} that converge to the optimal primal and dual solutions of the LP. We omit a
discussion of the convergence properties of the algorithm here, but note that the quality of solution
depends on the values of x̄, ū and β at the last iteration before convergence is declared. By applying
Theorem 5.6, we note that the constant C∗ is smaller when x̄ and ū are close to the primal and dual
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solution sets, thus improving the approximation and reducing the need to increase β to a larger
value to obtain an approximate solution to the LP of acceptable quality for purposes of rounding.

We now detail the update rules for Augmented Lagrangian method used in this work. Consider
the following LP

min
x∈C

cTx subject to Ax = b (5.13)

where x ∈ Rn and C is a polyhedral set. For LP-relaxations of the set-packing and set-covering
problems, the set C is the nonnegative orthant. For the multiway-cut problem, the set C may be the
k-dimensional simplex ∆k defined in (5.6). The Augmented Lagrangian method solves (5.13) by
recasting it as a sequence of optimization problems of the form

xj+1 = argmin
x∈C

Gβj(x;uj) := cTx− uTj (Ax− b) +
βj

2
‖Ax− b‖2 +

1
2βj
‖x− xj‖2, (5.14)

followed by an update step on the dual multipliers given by

uj+1 = uk + βj(Axj+1 − b). (5.15)

In practice, the subproblems (5.14) are solved inexactly using tolerances that tighten as the algorithm
proceeds. We define an inexact solution to the QP in (5.14) as one that satisfies ‖∇cGβj(xi;uj)‖ 6 εi
where

∇cGβj(x;uj) := PC(x−∇Gβj(xj;uj)) − xj. (5.16)

When C = {x ∈ Rn : l 6 x 6 u} is the set of ‘box-constraints’, we may also use

[∇cGβj(x;uj)]i =


min

(
0,∇Gβj(x;uj)

)
[x]i > li

max
(
0,∇Gβj(x;uj)

)
[x]i 6 ui

∇Gβj(x;uj) li < [x]i < ui

∀i ∈ {1 . . .n}. (5.17)

Both the termination criterion in (5.16) and (5.17) are motivated from the optimality conditions of
(5.13). Our implementation is illustrated in Algorithm 9 (due to Eckstein and Silva [29]).

Asynchronous Stochastic-Coordinate Descent (ASCD)

The computational bottleneck in Algorithm 9 is the minimization step (5.14). Every other step
consists of simple matrix-vector operations that can easily be executed in parallel. Recent work
on asynchronous parallel versions of Algorithm 6 [70, 59] make the entire LP-rounding scheme
discussed in this work suitable for execution on multi core, shared-memory architectures. We use an
asynchronous variant of Algorithm 6 (due on [59]). In this scheme, each core performs an update
step, on a single coordinate, of the vector x that is centrally stored. The update steps across multiple
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Algorithm 9: Augmented Lagrangian method for (5.9)
Data: Initial point x0 ∈ Rn, uo ∈ Rm. Parameters µ ∈ (0, 1), ν ∈ (0, 1), σ0 > 0, σred ∈ (0, 1),

β0 > 0, ε0 > 0, εtol > 0, βmax > 0
Result: Solution x∗ for (5.9)

1 j← 0
2 while ‖Axj − b‖∞6 εtol and uTj (Axj − b) 6 εtol do
3 εj ← σj‖Axj − b‖
4 xj+1 ← argmin

x∈C
Gβj(x;uj) (solved to tolerance εj)

5 uj+1 ← uj + βj(Axj+1 − b)
6 if εj ← σj‖Axj − b‖ then
7 σj+1 ← σredσj
8 else
9 σj+1 ← σj

10 j← j+ 1
11 if ‖uj+1 − uj‖∞> µ‖uj − uj−1‖∞ or ‖uj+1 − uj‖∞< εj then
12 βj+1 = min(β/ν,βmax)
13 else
14 βj+1 ← βj

15 j← j+ 1
16 return xj

cores are performed in an asynchronous manner. Each thread essentially runs its own version of
Algorithm 6 independently of the others, choosing its update component i(j) and updating this
component of the shared x. By the time the update is performed, x will have been updated by
several other threads. Provided that the number of threads is not too large (according to a certain
threshold that depends on n (size of the vector x) and on the diagonal dominance properties of the
Hessian matrix) the convergence rate is similar to the serial case, and almost-linear speedup is seen
as the number of threads is increased. The algorithm terminates when (5.16) or (5.17) is satisfies.
We check for termination every 50n iterations.

Our implementation, based on [59], is optimized for the architecture of a 40-core Intel Xeon
E7-4450 which is used in our numerical experiments. Each thread is assigned to a single core in our
40-core Intel Xeon architecture. The 40 cores on the Xeon architecture are arranged into four nodes
(also known as sockets). As Figure 5.1 illustrates, each node has 10 cores and its own memory. Intel
follows a non-uniform memory access (NUMA) design paradigm where each core can access its own
local memory faster than the local memory of a core in another node. To exploit this, we shard the
hessian matrix Q := ATA of (5.14) into equal slices that are distributed across nodes. The sharding
is illustrated in Figure 5.1. We use a sampling without replacement strategy where each coordinate,
when updated, is not updated again until all other coordinates have already been updated. Further
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Figure 5.1: Asynchronous parallel implementation of algorithm 6.

(a) Intel E7-4450 architecture with 40 cores and 4 nodes. (b) Sharding the hessian matrix of (5.14).

Node 1 Node 2

Node 3 Node 4

Q matrix

more, each core only updates coordinates of x whose corresponding shard is stored in its own local
memory. The order in which the coordinates are updated are shuffled within each shard at the end
of each pass over the entire set of coordinates.

5.5 Experiments

Our experiments address the following questions: (1) How does our approach compare to a state-of-
the-art commercial solver? (2) Does not knowing the exact LP solution effect the quality of rounded
solutions in practice? and (3) Is our approximate LP-rounding scheme useful in graph analysis tasks
that arise in practical applications? We give favorable answers to all three questions.

Comparisons with Cplex

We conducted numerical experiments on three different combinatorial problems that commonly
arise in graph analysis tasks in machine learning: vertex cover, independent set, and multiway
cuts. For each problem, we compared the performance of our LP solver against the LP and IP
solvers of Cplex (v12.5) (denoted as Cplex-LP and Cplex-IP respectively). The two main goals of this
experiment are: (1) to compare the quality of the integral solutions obtained using our approach
with the integral solutions from Cplex-IP and (2) compare wall-clock times required by our Thetis
and Cplex-LP to solve the LPs constructed in the LP-rounding schemes.
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Datasets. Our tasks are based on two families of graphs. The first family of instances (frb59-26-1
to frb59-26-3) was obtained from Bhoslib1 (Benchmark with Hidden Optimum Solutions); they are
considered difficult problems [113]. The second family of instances are social networking graphs
obtained from the Stanford Network Analysis Platform (SNAP)2.

System Setup. Thetis was implemented using a combination of C++ (for Algorithm 6) and Matlab
(for the augmented Lagrangian framework). Our implementation of the augmented Lagrangian
framework was based on [29]. All experiments were run on a 4 Intel Xeon E7-4450 (40 cores @
2Ghz) with 256GB of RAM running Linux 3.8.4 with a 15-disk RAID0. Cplex uses 32 (of the
40) cores available in the machine, and for consistency, our implementation was also restricted
to 32 cores. Cplex implements presolve procedures that detect redundancy, and substitute and
eliminate variables to obtain equivalent, smaller LPs. Since the aim of this experiment is compare
the algorithms used to solve LPs, we ran both Cplex-LP and Thetis on the reduced LPs generated by
the presolve procedure of Cplex-LP. We use the barrier optimizer option in Cplex-LP. Both Cplex-LP
and Thetis were run to a tolerance of ε = 0.1. Additional experiments with Cplex-LP run with its
default tolerance options are reported in Table 5.5). All algorithms were provided with a time limit
of 3600 seconds excluding the time taken for preprocessing as well as the rounding algorithms used
to generate integral solutions from fractional solutions.

Results. We solved the vertex cover problem using the approximation algorithm described in sec-
tion 5.2. We solve the maximum independent set problem using a variant of the es + o(s)-factor
approximation of [8] where s is the maximum degree of a node in the graph. For the multiway-cut
problem (with k = 3) we use the 3/2 − 1/k-factor approximation algorithm described in [101].
The details of the transformation from approximate infeasible solutions to feasible solutions are
provided in Sridhar et al. [89]. Since the rounding schemes for maximum-independent set and
multiway-cut are randomized, we chose the best feasible integral solution from 10 repetitions. The
results are summarized in Table 5.3, with additional details in Table 5.4. We now discuss, in detail,
the results for each of the problems; vertex cover, independent set, and multiway cut separately.

Vertex Cover. On the Bhoslib instances (frb59-26-1 to frb59-26-3), Cplex-IP produced integral
solutions that were within 1% of the documented optimal solutions, but required an hour for each of
the instances. In comparison, the integral solutions from Thetis were within 4% of the documented
optimal solutions. Although the LP solutions obtained by Thetis were less accurate than those
obtained by Cplex-LP, the rounded solutions from Thetis and Cplex-LP are almost exactly the same.
In summary, the LP-rounding approaches using Thetis and Cplex-LP obtain integral solutions of

1http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
2http://snap.stanford.edu/

http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
http://snap.stanford.edu/
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Minimization problems Maximization problems
Instance VC MC MIS

PV NNZ S Q PV NNZ S Q PV NNZ S Q
frb59-26-1 0.12 0.37 2.8 1.04 0.75 3.02 53.3 1.01 0.12 0.38 5.3 0.36
frb59-26-2 0.12 0.37 4.6 1.04 0.75 3.02 52.0 1.00 0.12 0.38 5.4 0.34
frb59-26-3 0.12 0.37 4.9 1.04 0.75 3.02 53.2 1.00 0.12 0.38 4.0 0.37
Amazon 0.39 1.17 8.4 1.23 5.89 23.2 - 0.42 0.39 1.17 7.4 0.82

DBLP 0.37 1.13 8.3 1.25 6.61 26.1 - 0.33 0.37 1.13 8.5 0.88
Google+ 0.71 2.14 9.0 1.21 9.24 36.8 - 0.83 0.71 2.14 10.2 0.82

Table 5.3: Summary of wall-clock speedup (in comparison with Cplex-LP) and solution quality (in
comparison with Cplex-IP) of Thetis for the LP relaxations of three graph analysis problems. Each
code is run with a time limit of one hour and parallelized over 32 cores, with ‘-’ indicating that the
code reached the time limit. PV is the number of primal variables while NNZ is the number of
nonzeros in the constraint matrix of the LP in standard form (both in millions). S is the speedup,
defined as the time taken by Cplex-LP divided by the time taken by Thetis. Q is the ratio of the
solution objective obtained by Thetis to that reported by Cplex-IP. For minimization problems (VC
and MC) lower Q is better; for maximization problems ( MIS) higher Q is better. For MC, a value of
Q < 1 indicates that Thetis found a better solution than Cplex-IP found within the time limit.

comparable quality with Cplex-IP — but Thetis is three times faster than Cplex-LP. We observed a
similar trend on the large social networking graphs. We were able to recover integral solutions of
comparable quality to Cplex-IP, but seven to eight times faster that using LP-rounding with Cplex-LP.
We make two additional observations. First, we observed a smaller gap (compared to the Bhoslib
instances) between the optimal LP and optimal IP solutions. Second, we recorded unpredictable
performance of Cplex-IP on large instances. Notably, Cplex-IP was able to find the optimal solution
for the Amazon and DBLP instances, but timed out on Google+, which is of comparable size. On some
instances, Cplex-IP outperformed even Cplex-LP in wall clock time, due to specialized presolve
strategies.

Maximum Independent Set. The independent set problem is theoretically one of the hardest
known combinatorial problems. Again, we observed that the quality of the rounded solutions
obtained using Cplex-LP and Thetis were comparable but Thetis was 5-10x faster than Cplex-IP. In
terms of solution quality, on the Bhoslib instances, the integral solutions obtained using Cplex-LP
and Thetis were a factor of 3 away from the documented optimal solutions. Even Cplex-IP was
unable to solve any of the instances within an hour. The terminal optimality gaps were as large as
20%. On the social networking instances, we observed that the rounded feasible solutions obtained
from Thetis were only marginally worse than those obtained using Cplex-IP, but were obtained
using an order of magnitude less time.
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VC Cplex IP Cplex LP Thetis
(min) t (secs) BFS Gap(%) t (secs) LP RSol t (secs) LP RSol

frb59-26-1 - 1475 0.7 2.48 767.0 1534 0.88 959.7 1532
frb59-26-2 - 1475 0.6 3.93 767.0 1534 0.86 979.7 1532
frb59-26-3 - 1475 0.5 4.42 767.0 1534 0.89 982.9 1533
Amazon 85.5 1.60×105 - 24.8 1.50×105 2.04×105 2.97 1.50×105 1.97×105

DBLP 22.1 1.65×105 - 22.3 1.42×105 2.08×105 2.70 1.42×105 2.06×105

Google+ - 1.06×105 0.01 40.1 1.00×105 1.31×105 4.47 1.00×105 1.27×105

MC Cplex IP Cplex LP Thetis
(min) t (secs) BFS Gap(%) t (secs) LP RSol t (secs) LP RSol

frb59-26-1 72.3 346 - 312.2 346 346 5.86 352.3 349
frb59-26-2 561.1 254 - 302.9 254 254 5.82 262.3 254
frb59-26-3 27.7 367 - 311.6 367 367 5.86 387.7 367
Amazon - 12 NA - - - 55.8 7.3 5

DBLP - 15 NA - - - 63.8 11.7 5
Google+ - 6 NA - - - 109.9 5.8 5

MIS Cplex IP Cplex LP Thetis
(max) t (secs) BFS Gap(%) t (secs) LP RSol t (secs) LP RSol

frb59-26-1 - 50 18.0 4.65 767 15 0.88 447.7 18
frb59-26-2 - 50 18.0 4.74 767 17 0.88 448.6 17
frb59-26-3 - 52 13.4 3.48 767 19 0.87 409.2 19
Amazon 35.4 1.75×105 - 23.0 1.85×105 1.56×105 3.09 1.73×105 1.43×105

DBLP 17.3 1.52×105 - 23.2 1.75×105 1.41×105 2.72 1.66×105 1.34×105

Google+ - 1.06×105 0.02 44.5 1.11×105 9.39×104 4.37 1.00×105 8.67×104

Table 5.4: Wall-clock time and quality of fractional and integral solutions for three graph analysis
problems using Thetis, Cplex-IP and Cplex-LP. Each code was given a time limit of one hour, with
‘-’ indicating a timeout. BFS is the objective value of the best integer feasible solution found by
Cplex-IP. The gap is defined as (BFS−BB)/BFS where BB is the best known solution bound at the
end of the time limit. A gap of ‘-’ indicates that the problem was solved to within 0.01% accuracy
and NA indicates that Cplex-IP was unable to find a valid solution bound. LP is the objective value
of the LP solution, and RSol is objective value of the rounded solution.

Multiway-Cut. The LP formulation of the multiway-cut problem was the largest of the three
problems discussed in the experimental results. The number of variables in the multiway-cut
problem isO(|E|×k) where |E| is the number of edges in the graph and k is the number of terminals.
The terminals were chosen randomly to be in the same connected component of the graph. All
instances, excepting Google+, were fully connected. For Google+, 201949 (out of 211186) vertices
were connected to the terminals. For all instances, including Google+, all codes were run on the
formulation (5.6) built using the entire graph. The LP representation of (5.6) was around ten times
larger than vertex cover and independent set. We solved the QP-approximation for the multiway-cut
problem using block-SCD, which is variant of Algorithm 6. Each iteration of the block-SCD method
updates a block of coordinates. If the block corresponds to the variable xv, ∀v ∈ V in (5.6), we
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VC Cplex-IP Cplex-LP (default) Thetis
(min) t (secs) BFS Gap(%) t (secs) LP RSol t (secs) LP RSol

frb59-26-1 - 1475 0.7 4.59 767.0 1534 0.88 959.7 1532
frb59-26-2 - 1475 0.6 4.67 767.0 1534 0.86 979.7 1532
frb59-26-3 - 1475 0.5 4.76 767.0 1534 0.89 982.9 1533
Amazon 85.5 1.60×105 - 21.6 1.50×105 1.99×105 2.97 1.50×105 1.97×105

DBLP 22.1 1.65×105 - 23.7 1.42×105 2.07×105 2.70 1.42×105 2.06×105

Google+ - 1.06×105 0.01 60.0 1.00×105 1.30×105 4.47 1.00×105 1.27×105

MC Cplex-IP Cplex-LP (default) Thetis (ε = 0.1)
(min) t (secs) BFS Gap(%) t (secs) LP RSol t (secs) LP RSol

frb59-26-1 547.4 346 - 397.0 346 346 5.86 352.3 349
frb59-26-2 71.9 254 - 330.1 254 254 5.82 262.3 254
frb59-26-3 30.3 367 - 400.6 367 367 5.86 387.7 367
Amazon - 12 NA - - - 55.8 7.28 5

DBLP - 15 NA - - - 63.8 11.70 5
Google+ - 6 NA - - - 109.9 5.84 5

MIS Cplex-IP Cplex-LP (default) Thetis (ε = 0.1)
(max) t (secs) BFS Gap(%) t (secs) LP RSol t (secs) LP RSol

frb59-26-1 - 50 18.0 4.88 767 16 0.88 447.7 18
frb59-26-2 - 50 18.0 4.82 767 16 0.88 448.6 17
frb59-26-3 - 52 13.4 4.85 767 16 0.87 409.2 19
Amazon 35.4 1.75×105 - 25.7 1.85×105 1.58×105 3.09 1.73×105 1.43×105

DBLP 17.3 1.52×105 - 24.0 1.75×105 1.41×105 2.72 1.66×105 1.34×105

Google+ - 1.06×105 0.02 68.8 1.11×105 9.40×104 4.37 1.00×105 8.67×104

Table 5.5: Wall-clock time and quality of fractional and integral solutions for three graph analysis
problems using Thetis, Cplex-IP and Cplex-LP (run to default tolerance). Each code was given a
time limit of one hour, with ‘-’ indicating a timeout. BFS is the objective value of the best integer
feasible solution found by Cplex-IP. The gap is defined as (BFS−BB)/BFS where BB is the best known
solution bound at the end of the time limit. A gap of ‘-’ indicates that the problem was solved to
within 0.01% accuracy and NA indicates that Cplex-IP was unable to find a valid solution bound.
LP is the objective value of the LP solution, and RSol is objective value of the rounded solution.

perform a projection on to the k-dimensional simplex ∆k. The simplex projection is necessary to
ensure that the approximate LP solution is always feasible for (5.6). We disabled presolve for Thetis
to prevent the simplex constraints from being eliminated or altered. We did not disable presolve
for Cplex-LP or Cplex-IP. Our results demonstrate that our solver is much more scalable than both
Cplex-IP and Cplex-LP. We were over an order of magnitude faster than Cplex-LP on the Bhoslib
instances with solutions of comparable quality. In fact, LP-rounding recovered the optimal solution
on some of the instances. On the SNAP instances, both Cplex-IP and Cplex-LP failed to complete
within an hour on any of the instances. Cplex-IP was able to generate feasible solutions using its
heuristics, but was able to unable to solve the root-node relaxation on any of the instances.
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Instance Problem Statistics Time (seconds)
PV NNZ Cplex-QP ASCD

frb59-26-1 0.12 0.88 1410.7 0.34
frb59-26-2 0.12 0.88 1371.7 0.32
frb59-26-3 0.12 0.88 - 0.36
Amazon 0.56 2.91 462.8 0.89

DBLP 0.52 2.78 427.7 0.77
Google+ 0.77 5.06 - 2.83

Table 5.6: Summary of wall-clock time required by ASCD and Cplex-QP to solve the QP-
approximation (5.11) for the vertex cover problem. Each code is run with a time limit of one
hour and parallelized over 32 cores, with ‘-’ indicating that the code reached the time limit. PV is
the number of primal variables while NNZ is the number of nonzeros in the hessian matrix (both in
millions).

Cplex-LP
Instance ε = 1× 10−1 ε = 1× 10−3 ε = 1× 10−5

t(s) LP RSol t(s) LP RSol t(s) LP RSol
frb59-26-1 2.48 767.0 1534 4.70 767.0 1534 4.59 767.0 1534
frb59-26-2 3.93 767.0 1534 4.61 767.0 1534 4.67 767.0 1534
frb59-26-3 4.42 767.0 1534 4.62 767.0 1534 4.76 767.0 1534
Amazon 24.8 1.50×105 2.04×105 21.0 1.50×105 1.99×105 46.7 1.50×105 1.99×105

DBLP 22.3 1.42×105 2.08×105 22.8 1.42×105 2.07×105 31.1 1.42×105 2.06×105

Google+ 40.1 1.00×105 1.31×105 61.1 1.00×105 1.29×105 60.0 1.00×105 1.30×105

Thetis
Instance ε = 1× 10−1 ε = 1× 10−3 ε = 1× 10−5

t(s) LP RSol t(s) LP RSol t(s) LP RSol
frb59-26-1 0.88 959.7 1532 13.7 767.0 1534 13.3 767.0 1534
frb59-26-2 0.86 979.7 1532 14.2 767.0 1534 14.1 767.0 1534
frb59-26-3 0.89 982.9 1533 12.9 767.0 1534 12.9 767.0 1534
Amazon 2.97 1.50×105 1.97×105 59.5 1.50×105 1.99×105 50.3 1.50×105 1.99×105

DBLP 2.70 1.42×105 2.06×105 39.2 1.42×105 2.07×105 59.1 1.42×105 2.07×105

Google+ 4.47 1.00×105 1.27×105 1420.1 1.00×105 1.29×105 2818.2 1.00×105 1.30×105

Table 5.7: Wall-clock time and quality of fractional and integral solutions for the vertex cover proble
using Thetis and Cplex-LP solved to three different tolerance levels. Each code was given a time
limit of one hour, with ‘-’ indicating a timeout. LP is the objective value of the LP solution, and RSol
is objective value of the rounded solution.

Effect of LP-solution accuracy on rounded solutions

The results reported in table 5.4 use comparable (fairly loose) tolerances for both Cplex-LP and
Thetis. Table 5.7 reports the computational time required by Cplex-LP and Thetis to solve the
LP-relaxations of the vertex cover problem to three different values of tolerance i.e. ε = 1× 10−1,
ε = 1× 10−3 and ε = 1× 10−5 and the quality of the corresponding integral solution obtained by
rounding each of the LP solutions. Our results, on the Bhoslib as well as social networking instances,
indicate that computational time required by Cplex-LP to solve the LP-relaxation (5.8) was relatively
insensitive to the to tolerance level ε. In contrast, Thetis was much faster at finding less accurate
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solutions. For both methods, the quality of integral solutions obtained using LP-rounding are not
sensitive to the choice of tolerance. Our results validated the main claim in the chapter that in
LP rounding schemes, since we ultimately round the LP to obtain an approximate solution of the
combinatorial problem, a crude solution of the LP may suffice.

Comparing ASCD and Cplex while solving (5.11). We highlight the importance of the ASCD by
comparing its performance with Cplex-QP in solving the QP approximation (5.11) of the vertex
cover problem to a tolerance of 1×10−3 with β = 1. Table 5.6 reports problem statistics as well as
wall-clock time required by each of the codes. We used the barrier optimizer option for Cplex-QP.
ASCD was three orders of magnitude faster than Cplex-QP on the Bhoslib instances and up to 2
orders of magnitude faster than Cplex-QP on the social networking instances. Cplex-QP was unable
to solve the QP-approximations, within the time limit, for some of the social networking instances.

5.6 Case Study: LP-rounding in Machine Learning

We now present a case study demonstrating the use of LP-rounding for tasks that occur in the field
of machine learning: entity resolution and text chunking. We compare application level quality of
the rounded solutions obtained using Thetis, optimal integral solutions obtained using Cplex-IP and
the solutions obtained using using Gibbs sampling-based approach [114] which is a state-of-the-art
system for these tasks.

Background Graphical models are probabilistic models that are commonly used in the design
and analysis of algorithms used in machine learning. In these models, a graph structure encodes
a joint probability distribution, where vertices correspond to random variables and edges specify
conditional dependencies. In graphical models, inference is the problem of computing the posterior
distribution of ‘hidden’ nodes given ‘observed’ nodes in a graphical model. The Maximum-A-
Posteriori (MAP) inference problem is the task of finding the most likely assignment to the variables
in a graphical model. A factor graph [54] is a specific type of graphical models in which a bipartite
hypergraph can be used to expresses how the joint-probability distribution of the variables can
be factored into a product of functions that depend only on a subset of the variables. The MAP
inference problem, on factor graphs, can be solved using belief propagation or the sum-product
algorithm [76]. The MAP estimation problem can also be formulated as an IP. The connection
between belief-propagation and the LP-relaxation of the IP formulation was studied by Wainwright
et al. [106]. They showed that if the optimal solution of the LP-relaxation is integral, then an optimal
solution of the LP-relaxation is a solution to the MAP inference problem. Ravikumar et al. [79] build
on this result and show that approximate LP solutions can also be rounded to solve MAP inference
on graphical models.
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Task Formulation PV NNZ Method P R F1 Rank
Cplex-IP .87 .91 .89 10/13

CoNLL Skip-chain CRF 25M 51M Thetis .87 .90 .89 10/13
Gibbs Sampling .86 .90 .88 10/13

Cplex-IP .80 .80 .80 6/17
TAC-KBP Factor graph 62K 115K Thetis .79 .79 .79 6/17

Gibbs Sampling .80 .80 .80 6/17

Table 5.8: Solution quality of our LP-rounding approach on machine learning tasks. PV is the
number of primal variables and NNZ is the number of non-zeros in the constraint matrix of the LP
in standard form. The rank indicates where each code would have placed, had it been used in the
competition.

Results We now focus on solving MAP estimation problems using factor graphs on two different
tasks: entity linking and text chunking. For entity linking, we use the TAC-KBP 2010 benchmark3.
The input graphical model has 12k boolean random variables and 17k factors. For text chunking,
we use the CoNLL 2000 shared task4. The factor graph contained 47K categorical random variables
(with domain size 23) and 100K factors. We use the training sets provided by TAC-KBP 2010 and
CoNLL 2000 respectively. For each task, we ran the MAP inference on the factor graph using
the LP formulation in [54] and compare the quality of the solutions obtained by Thetis, Cplex-IP
and a Gibbs sampling-based approach [114]. For Thetis, we follow the LP-rounding algorithm
in [79] to solve the MAP estimation problem. We evaluate the quality of both approaches using the
official evaluation scripts and evaluation data set provided by each challenge. Table 5.8 contains a
description of the three relevant quality metrics at the application level: precision (P), recall (R),
and F1-scores. Table 5.8 demonstrates that our algorithm produces solutions of comparable quality
to state-of-the-art approaches for these graph analysis tasks. Our results also indicate that solution
quality (at an application level) obtained using Thetis was comparable to Cplex-IP suggesting that,
in these instances, an exact solution of the IP does not provide any more value than a ‘good enough’
solution obtained using Thetis.

5.7 Conclusion

We described Thetis, an LP rounding procedure based on an approximate solver for the LP-relaxation.
We derived worst-case runtime and solution quality bounds for our scheme, and demonstrated that
our approach was faster than an alternative based on a state-of-the-art LP solver, while producing
rounded solutions of comparable quality.

3http://nlp.cs.qc.cuny.edu/kbp/2010/
4http://www.cnts.ua.ac.be/conll2000/chunking/

http://nlp.cs.qc.cuny.edu/kbp/2010/
http://www.cnts.ua.ac.be/conll2000/chunking/
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6 conclusions and future work

In this dissertation we discussed several non-convex and combinatorial optimization problems. In
Chapter 2, we presented a theoretical and computational comparison of MIP models for PLFs when
a binary indicator variable determines if the PLF is required to be evaluated. For a large class of
popular MIP formulations, we showed that our proposed formulations were either locally ideal or
sharp while standard formulations were not. Our numerical experiments showed that our proposed
formulations have significant computational advantages.

In Chapter 3, we considered a production planning problem in which the production process
creates a mixture of desirable products and undesirable byproducts. We presented a novel discrete-
time MINLP formulation of the problem that was more accurate than a previously considered
formulations. We then proposed a MIP approximation and two MIP relaxations of our proposed
MINLP formulation. Our numerical experiments demonstrated that our MINLP formulation was
30% more accurate than past work and that our MIP approximations and relaxations were able to
find near-optimal solutions for large instances of this non-convex production planning problem.

In Chapter 4, we studied production planning problems influenced by IRR-based PSCs. We
presented two approaches for finding feasible solutions: a MIP formulation and a search algorithm
based on a novel continuous domain formulation. We also proposed a market-based decomposition
scheme to compute solution bounds. Our experiments, on a sample application problem, demon-
strated that the MIP formulation was suitable for problems with 3 or fewer markets. For problems
with more than 3 markets, a combination of our search algorithm and market-based decomposition
algorithm was preferable. The update rule discussed in Algorithm 4 works well in practice but we
are currently not aware of any convergence analysis (even when the function being optimized is
convex in the primal variables) that shows that the primal variables, dual variables and solution
bound all converge.

In Chapter 5, we study three classes of combinatorial optimization problems, with applications
in fields such as machine learning, advertising, statistics, and computer vision. For each of these
problems, one can obtain near-optimal solutions by rounding the solution of an LP. We showed
that one can recover solutions of comparable quality by rounding an approximate LP solution. We
built software that could compute these approximate LP solutions up to an order of magnitude
faster than Cplex. We also derived bounds on worst case runtime and solution quality bound of
our approximate LP-rounding scheme. Our work on approximate LP-rounding is relatively new. A
natural direction for future work is to extend the results derived for covering, packing, and multiway-
cut problems to a wider range of LP-rounding schemes. Another possibility is to extend the worst
case run-time and solution quality bounds from the QP-approximation to augmented Lagrangian
algorithms. A third possibility is to address one of the main disadvantages of LP-rounding: the
‘one-shot’ nature of this scheme which means that quality of feasible integral solutions cannot
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be improved beyond an initial rounding of the root LP-relaxation. One possible way to address
this issue is to use cutting-plane algorithms that iteratively refine fractional solutions by adding
suitable linear inequalities (called cuts). For classes of combinatorial problems, such as maximum-
independent set, there are known families of cuts [63, 87, 61, 5, 6, 40] with desirable theoretical and
computational properties. It is known that the addition of only a few carefully chosen inequalities
from these families can significantly improve solution quality. Unfortunately, some of the most
effective families of cuts require LP basis information which is not easily available using penalty
based methods like the one discussed in Chapter 5. Enhancing solution quality of approximate
LP-rounding with a general class of cutting plane algorithms could be an important step towards
effectively solving large scale combinatorial problems.
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