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Abstract— In this paper, we propose a load-based scheme
for assigning channels to radio interfaces in multi-radio, multi-
channel wireless mesh networks. We first construct a model for
channel assignment as an optimization problem with the goal
of minimizing the overall network interference. The problem is
proven to be NP-Hard. We then apply the Lagrangian relaxation
method to obtain lower bounds as well as near-optimal feasible
solutions for large size networks. We further present a meta-
heuristic based on genetic algorithms, which can yield good qual-
ity solutions for very large networks. With these two centralized
approaches as the benchmark, we propose a fully distributed
algorithm in order to tackle the channel assignment problem
practically. Our extensive simulation experiments demonstrate
that the distributed algorithm performs competitively and can
serve as a practical and scalable solution to the channel assign-
ment problem.

I. INTRODUCTION

Physical layer technologies have undergone noteworthy
changes in the recent past. Despite these changes, today’s
wireless LAN still cannot match its wired counterparts in
providing sustained bandwidth. With the inclusion of all the
overheads like 802.11 headers, errors and MAC contention,
the actual throughput available to applications is drastically
reduced [1]. The transmission rates are also known to fall
rapidly with increasing distance between the nodes under
consideration. The situation is further intensified in multi-
hop wireless mesh networks [2] due to the increased interfer-
ence between adjacent nodes as well as interference between
neighboring paths [3]. To account for this, the IEEE 802.11
standards provide multiple overlapping frequency channels
to support multiple simultaneous transmissions in the same
interference region. Figure 1 illustrates the use of multiple
channels in a multi-radio wireless mesh network. While these
multiple channels offer a way of minimizing interference, they
raise additional issues of channel assignment for maximizing
overall throughput.

Channel assignment deals with the assignment of channels
to radio interfaces with the goal of minimizing the total
network interference. Most of the existing approaches target
the multi-radio environment because it is known that equipping
each node with multiple radio interfaces can more effectively
utilize the spectrum [4], [5].

One of the approaches to handle channel assignment is
to change channels on-demand, i.e., on a per-packet basis

Fig. 1. A wireless mesh network with two radios and four channels.

[6]–[9]. However, such dynamic channel assignment schemes
require frequent channel switchings within each node. This
is known to cause delays of the order of a few milliseconds
[10]. They also require high speed synchronizations among
nodes during transmission/receival over a particular channel,
which is difficult to achieve without modifying the 802.11
MAC. For these reasons, an approach in this direction might
not be practical. Another commonly suggested approach is
static channel assignment [4], [11] which is done on the
premise of ease of adaptability in commodity 802.11 hardware.
Although these processes are referred to as static, they can
easily be extended to semi-dynamic by refreshing the channel
assignment at regular fixed time intervals, depending on the
network load stability and predictability. Hybrid approaches
[12]–[14] apply semi-dynamic / static schemes to fixed inter-
faces and dynamic channel assignment schemes to switchable
interfaces. Although they still suffer from channel switching
delays of the dynamic approaches, they can work well in
highly unstable networks. Strictly speaking, our approach in
this work addresses the semi-dynamic channel assignment
problem which can alternatively be used in any one of the
hybrid approaches.

In this paper, we propose a load-based scheme to address
the channel assignment problem. This scheme is an important
element of the joint channel assignment and routing problem
that we are currently investigating. We adopt a graph-theoretic
approach and formulate the problem as an integer linear
programming (ILP) problem. The channel assignment problem



is proven to be NP-Hard. We then apply the Lagrangian
relaxation method [15] to obtain lower bounds as well as near-
optimal solutions. We further present a meta-heuristic based
on genetic algorithms(GA’s) which can yield good quality
solutions for very large networks. With these centralized
approaches as the benchmark, we propose a fully distributed
algorithm in order to tackle the channel assignment problem
practically.

The rest of the paper is organized as follows. After giv-
ing a brief overview of related work in Section II, Section
III provides the ILP formulation of the channel assignment
problem. In Section IV we apply the Lagrangian relaxation
method to obtain lower bounds and present the Lagrangian
heuristic to find near-optimal feasible solutions. In Section
V we propose the meta-heuristic while Section VI presents
the distributed algorithm. In Section VII we evaluate the
performance of our algorithms using extensive simulation
experiments. We conclude our paper in Section VIII and
discuss future directions.

II. RELATED WORK

As mentioned previously dynamic and hybrid approaches
have significant shortcomings for channel assignment based
on our requirements. We will now look at static/semi-dynamic
channel assignment in greater detail.

Das et al. [16] proposed various optimization models, how-
ever their approaches are not scalable due to the exponential
complexity. Ramachandran et. al. in [17] developed a measure-
ment based centralized approach to handle channel assignment
for radios instead of links. This approach plainly handles the
binding of a radio to a channel leaving the interface-channel
binding procedure unsolved. Although the polling procedure
for traffic bandwidth estimation suggested in [17] requires
less time in comparison with those suggested in [18], it still
requires diverting traffic to a default channel for a considerable
amount of time. Apart from the above stated shortcomings, all
these approaches suffer from being centralized and therefore
difficult to implement in a real network.

Several authors have proposed distributed algorithms to
aid practicality. In [1], the authors proposed a distributed
channel assignment scheme for a tree-based traffic pattern
with gateways as the root nodes. This scheme may however
lead to inefficient channel assignments and routing in a more
generic peer-to-peer enterprise network. The authors of [19]
proposed a distributed algorithm based on minimizing the
interference using partially overlapping channels as explored
by [20]. This algorithm treats channel assignment independent
of network load. However, it is a well known fact that load-
aware channel assignment improves the network throughput
[11]. Thus, we are motivated to design a scheme that can more
intricately acknowledge the dependence of channel assignment
on network load.

The work in [21] is most closely related to ours. There, the
authors chose to approximate the channel assignment problem
as a solution to the Max-K-Cut problem on the conflict graph

using Tabu search [22]. However, their approach does not offer
theoretical lower bounds for accuracy estimations.

III. PROBLEM FORMULATION

In this section, we present an ILP formulation of the channel
assignment problem. The later sections will then describe
different approximation and heuristic schemes to offer good
quality polynomial time solutions for this problem.

A. Network Model

A wireless mesh network can be modeled as a connected
graph G = (V,E), where V is the set of N mesh nodes and
E ⊂ V × V is the set of wireless links. We assume that each
node uses omni-directional antennas and all wireless links are
bi-directional. A wireless link exists between nodes i and j
if the distance between the two nodes, di,j , is smaller than
Rt, where Rt is a fixed transmission range. For simplicity,
we assume that a transceiver has the same receiving and
transmission range. Thus, in our context, each edge (i, j) ∈ E
represents an undirected edge of the graph G.

Let the set of channels supported by the 802.11 spectrum
be denoted as K, where K = {1, 2, . . . , k}, and the number
of radios on each node as Mi ≤ |K|, ∀i ∈ V . We assume that
all channels are orthogonal, so the interference exists between
two links if they are within interference range and are assigned
the same channel. We believe that our model can be easily
extended to account for non-orthogonal channels. To model
the interference we consider a conflict graph Gc = (Vc, I),
where Vc = E and I ⊂ E × E . Two links (i, j) and (u, v)
interfere with each other if they operate on the same channel
and any of the quantities du,i, dv,i, du,j , dv,j is smaller than
sRi, where Ri denotes the fixed interference range. Let Ii,j ⊂
I , ∀(i, j) ∈ E, denote the set of all links in the network within
the interference range of link (i, j).

Let L be the load matrix of the network. Thus, Li,j is the
expected traffic on link (i, j). This flow estimate of network
traffic can be obtained using tools like the CoMo project [23].

We also make the following assumptions while modeling
the channel assignment problem in wireless mesh networks.

• The traffic flow on the network is relatively stable over
a period of time and is easy to predict. This is a fairly
reasonable assumption for enterprise networks which are
designed for balanced network flows.

• Nodes are generally static. This ensures no major topol-
ogy changes during the course of channel assignment.

B. ILP Formulation

The problem of multi-radio channel-assignment is the as-
signment of at-most Mi channels to each node from the set
K such that the sum of weights of potentially interfering links
is a minimum.

First, we define a channel assignment matrix C as

Ck
i,j =

{
1 if link (i, j) uses channel k

0 otherwise



The channel-assignment problem can be modeled as an ex-
tended version of the edge scheduling problem with an ad-
ditional constraint of limited number of radios per node. To
account for this constraint we define a radio usage matrix X
in the following manner

Xk
i =

{
1 if node i has a radio tuned to channel k

0 otherwise

The binding of link (i, j) to channel k must force the binding
of both the corresponding radios to the same channel. Thus,
we have

Ck
i,j ≤ Xk

i ∀ k ∈ K, (i, j) ∈ E (1)

Ck
i,j ≤ Xk

j ∀ k ∈ K, (i, j) ∈ E (2)

The number of channels that can be supported on each node is
limited by the number of radios it has. This can be expressed
as ∑

k∈K

Xk
i ≤ Mi ∀ i ∈ V (3)

We also ensure that each link in the network is assigned one
channel to meet the requirement of topology preservation.
Several models have questioned this assumption. However,
we believe that, without assigning a channel to each link,
complicated issues of topology-preservation would be raised,
which can have adverse effects on higher layers. Therefore,
this constraint is enforced by∑

k∈K

Ck
i,j = 1 ∀(i, j) ∈ E (4)

To indicate if interference exists on link (i, j), we define binary
variables Yi,j as

Yi,j =

{
1 if interference exists on link (i, j)
0 otherwise

In our model, we assume that interference exists on link (i, j)
if any link in the set Ii,j is assigned the same channel as (i, j).
This can be ensured by the following constraint.

Ck
i,j + Ck

u,v − 1 ≤ Yi,j

∀k ∈ K, (u, v) ∈ Ii,j , (i, j) ∈ E (5)

The optimization criterion of the channel assignment problem
is to minimize the interference throughout the network. Unlike
[19], the objective function of our load-based interference
model is a weighted summation giving due importance to the
link traffic. Hence, we have

Z = min
∑

(i,j)∈E

Li,jYi,j (6)

C. Interference Estimation and Modeling
The load matrix L is determined by an iterative procedure

based on predictable load estimations which is a reasonable
assumption for enterprise networks. We define a time frame
Tr to measure link load. The average number of packets sent
and received in the previous n time frames would serve as the
expected load matrix for the next time frame. The averaging
is done to prevent unexpected load spikes from affecting the
system adversely.

Misra et al. [20] have formally modeled the degree of
overlap between partially overlapping channels. We believe
that our model can be easily extended to incorporate partially
overlapping channels.

Control information can be transfered using a default chan-
nel thoughout the network. This fairly simple solution for
transferring control information has been disputed by Naveed
et al. in [24] where they propose an alternative topology
preserving assignment for default channel. However, this clus-
ter based channel assignment scheme is targeted mainly at
broadcast scenarios and may result in poor channel assignment
schemes in a more generic peer-to-peer network. Disrupting
topology can also have adverse effects on the upper layers,
especially routing [25].

IV. LAGRANGIAN RELAXATION

The channel assignment problem we consider in this paper
is NP-hard (see Theorem 1 in the Appendix). Therefore, we
resort to approximation approaches to obtain good quality
solutions in polynomial-time. In this section, we apply the
Lagrangian relaxation method to the ILP model. This approach
will not only provide lower bounds but also generate near-
feasible solutions which can be made feasible and near-optimal
by some judicious tinkering.

We first relax the complicating constraints (5). The La-
grangian problem can be stated as,

Zd(λ) = min
∑

(i,j)∈E

Li,jYi,j

+
∑

(i,j)∈E

∑
k∈K

∑
(u,v)∈Ii,j

λk
i,j,u,v(Ck

i,j + Ck
u,v − 1− Yi,j)

(7)

subject to (1), (2), (3) and (4),

where λ = {λk
i,j,u,v ≥ 0 | k ∈ K, (i, j) ∈ E, (u, v) ∈ Ii,j} is

the set of Lagrangian multipliers associated with (5).
Expanding (7), we have

Zd(λ) = min
∑

(i,j)∈E

(
Li,j −

∑
k∈K

∑
(u,v)∈Ii,j

λk
i,j,u,v

)
Yi,j

+
∑

(i,j)∈E

∑
k∈K

∑
(u,v)∈Ii,j

λk
i,j,u,vCk

i,j

+
∑

(i,j)∈E

∑
k∈K

∑
(u,v)∈Ii,j

λk
i,j,u,vCk

u,v

−
∑

(i,j)∈E

∑
k∈K

∑
(u,v)∈Ii,j

λk
i,j,u,v

(8)



Let
λ̃k

i,j =
∑

(u,v)∈Ii,j

λk
i,j,u,v (9)

and
λ̂k

i,j =
∑

(u,v)∈Ii,j

λk
u,v,i,j (10)

Lemma 1: Given a channel-assignment matrix C and the
set of Lagrangian multipliers λ,∑

(i,j)∈E

∑
k∈K

∑
(u,v)∈Ii,j

λk
i,j,u,vCk

u,v =
∑

(i,j)∈E

∑
k∈K

λ̂k
i,jC

k
i,j (11)

Proof: Owing to the symmetry of the interference set,
we can observe that if (u, v) ∈ Ii,j then (i, j) ∈ Iu,v . Thus,
by interchanging the summations over (i, j) and (u, v) in the
left-hand side of (11), we have∑

(i,j)∈E

∑
k∈K

∑
(u,v)∈Ii,j

λk
i,j,u,vCk

u,v

=
∑

(i,j)∈E

∑
k∈K

∑
(u,v)∈Ii,j

λk
u,v,i,jC

k
i,j

=
∑

(i,j)∈E

∑
k∈K

λ̂k
i,jC

k
i,j

where the final equivalence follows from (10).

Letting, λ̄k
i,j = λ̂k

i,j + λ̃k
i,j , (8) can be written as

Zd(λ) = min
∑

(i,j)∈E

(
Li,j −

∑
k∈K

∑
(u,v)∈Ii,j

λk
i,j,u,v

)
Yi,j

+
∑

(i,j)∈E

∑
k∈K

λ̄k
i,jC

k
i,j

−
∑

(i,j)∈E

∑
k∈K

∑
(u,v)∈Ii,j

λk
i,j,u,v

(12)

We first observe that

min
∑

(i,j)∈E

(
Li,j −

∑
k∈K

∑
(u,v)∈Ii,j

λk
i,j,u,v

)
Yi,j

is a trivial problem. Letting

ui,j = Li,j −
∑
k∈K

∑
(u,v)∈Ii,j

λk
i,j,u,v (13)

we have

min
∑

(i,j)∈E

ui,jYi,j =
∑

(i,j)∈E

min(0, ui,j)

where

Yi,j =

{
1 if ui,j < 0
0 otherwise

Therefore, (7) reduces to

Zd(λ) =
∑

(i,j)∈E

(
min(0, ui,j)−

∑
k∈K

∑
(u,v)∈Ii,j

λk
i,j,u,v

)

+ min
∑

(i,j)∈E

∑
k∈K

λ̄k
i,jC

k
i,j

(14)

subject to (1), (2), (3) and (4).

To solve (14), the optimal C must solve

min
∑

(i,j)∈E

∑
k∈K

λ̄k
i,jC

k
i,j (15)

subject to (1), (2), (3) and (4).

However, it can be shown that (15) is still NP-hard due to the
set of complicating constraints (1) and (2). Thus, we further
relax (1) and (2), and the resulting Lagrangian problem is

Z̄d(β,γ) = min
∑

(i,j)∈E

∑
k∈K

λ̄k
i,jC

k
i,j

+
∑

i(i,j)∈E

∑
k∈K

βk
i,j(C

k
i,j −Xk

i )

+
∑

(i,j)∈E

∑
k∈K

γk
i,j(C

k
i,j −Xk

j )

(16)

subject to (3) and (4).

where β = {βk
i,j ≥ 0 | k ∈ K, (i, j) ∈ E} is the set of

Lagrangian multipliers associated with (1) and γ = {γk
i,j ≥

0 | k ∈ K, (i, j) ∈ E} is the set of Lagrangian multipliers
associated with (2). Rearranging the terms in (16), we have

Z̄d(β,γ) = min
∑
k∈K

∑
(i,j)∈E

(λ̄k
i,j + βk

i,j + γk
i,j)C

k
i,j

−
∑
k∈K

∑
(i,j)∈E

βk
i,jX

k
i

−
∑
k∈K

∑
(j,i)∈E

γk
j,iX

k
i

(17)

Let
θk

i,j = λ̄k
i,j + βk

i,j + γk
i,j (18)

and
φk

i =
∑

j:(i,j)∈E

βk
i,j +

∑
j:(j,i)∈E

γk
j,i (19)

Thus, we have

Z̄d(β,γ) = min
∑
k∈K

( ∑
(i,j)∈E

θk
i,jC

k
i,j −

∑
i∈V

φk
i Xk

i

)
(20)

subject to (3) and (4).

This problem reduces to two sub-problems, i.e.

min
∑
k∈K

∑
(i,j)∈E

θk
i,jC

k
i,j , subject to (4) (21)



and
max

∑
k∈K

∑
i∈V

φk
i Xk

i , subject to (3) (22)

We observe that (21) is trivially solved by choosing k with
the smallest θk

i,j for each link (i, j) and setting Ck
i,j = 1. Also

(22) is easily solved by choosing the Mi largest values of φk
i

for each node i and setting the corresponding Xk
i ’s as 1.

A. Evaluating Multipliers

It is clear that the best choice for the vector λ would be an
optimal solution to the problem

ZD(λ∗) = max
λ

Zd(λ) (23)

To evaluate λ, we use the subgradient method [26]. Given
an initial value of λ0, a sequence λT is generated, ∀(i, j) ∈
E, (u, v) ∈ Ii,j , k ∈ K, using

(λk
i,j,u,v)

T+1
= (λk

i,j,u,v)
T
+sk[(Ck

i,j)
T
+(Ck

u,v)
T−1−(Yi,j)

T ]

where CT is the optimal solution vector and sk is a positive
scalar step size given by

sk =
ε(Z∗ − Zd(λT ))

‖[(Ck
i,j)

T + (Ck
u,v)T − 1− (Yi,j)

T ]‖
2

Here, ε is a scalar satisfying 0 < ε ≤ 2 and is determined
by initiating ε = 2 and halving it whenever Zd has failed
to decrease for a fixed number of iterations. Z∗ is an upper
bound, obtained by applying the Lagrangian heuristic which
we will discuss in more detail in the following section.

Since (20) is obtained by Lagrangian relaxation as well, we
evaluate β and γ, ∀(i, j) ∈ E, k ∈ K, in a similar manner
using

(βk
i,j)

T+1
= (βk

i,j)
T

+ tk[(Ck
i,j)

T − (Xk
i )

T
]

where

tk =
ε̄(Z̄∗ − Z̄d(λT ))

‖[(Ck
i,j)

T − (Xk
i )T ]‖

2

and
(γk

i,j)
T+1

= (γk
i,j)

T
+ t

′

k[(Ck
ij)

T − (Xk
j )

T
]

where

t
′

k =
ε̃(Z̄∗ − Z̄d(λT ))

‖[(Ck
i,j)

T − (Xk
j )T ]‖

2 (24)

B. Generating Feasible Solutions

Solving the Lagrangian problem of ZD(λ∗) = maxλ Zd(λ)
provides lower bounds which can serve as a benchmark for
solution quality. Although it is rare that feasible solutions will
be discovered, we often find that the solutions obtained by
solving the Lagrangian problem are nearly feasible and can
be made feasible with careful manipulations. We propose a
two phase policy in order to convert nearly feasible solutions
into near-optimal feasible solutions.

The first phase, Make-Feasible, described in Algorithm 1, is
designed to alter an infeasible solution for (15) into a feasible

Algorithm 1 Make-Feasible (Graph G)
Require: C : Channel Assignment Matrix

K* : Least used channel in C
Bi : Sorted List of channels by β̄, for each node i

Ensure: A Feasible Solution C*
List ⇐ φ
for all Node i ∈ V do

Compute M̄i for the given C
if M̄i > Mi then

Add-to-list(List, node i)
end if

end for
Unassigned ⇐ φ
while List 6= φ do

i ⇐ Element in List with maximum M̄i −Mi

CurChnl ⇐ First(Bi)
while M̄i = Mi − 1 do

Choose j : (i, j) ∈ E and CCurChnl
i,j = 1

Add-to-list(List, node j)
Unassigned ⇐ Unassigned

⋃
link (i, j)

CCurChnl
i,j ⇐ 0

OldR ⇐ M̄i

Recompute M̄i

if M̄i < OldR then
CurChl ⇐ Next(Bi)

end if
end while
Remove-from-list(List, node i)

end while
for all link (i, j) ∈ Unassigned do

CK∗

i,j ⇐ 1
end for
C∗ ⇐ C

one. Make-Feasible uses the solution vector C of (15) and
calculates M̄i, ∀i ∈ V , the number of radios required by each
node to make the assignment C feasible. Since the radio-
usage X and the channel-assignment C are solved as two
independent problems in (15), M̄i may or may not be lesser
than Mi. If M̄i < Mi the algorithm does not alter the channel
assignment for links corresponding to i. However, every node
whose M̄i > Mi is added to a List.

For every node i in the List, Make-Feasible performs the
following tasks

• ”Unassigns” the channels for the links (i, j) until M̄i =
Mi − 1. Channels chosen for un-assignment are done in
increasing order of β̄. This is done to merge the solutions
for C and X as closely as possible.

• For each unassigned link (i, j), add the node j to the List
if it not already present.

Once the list is empty, Make-Feasible assigns all the unas-
signed channels to a pre-defined default channel K∗, the
channel with least number of total assignments in C.

The second phase uses the solution determined by Make-



Fig. 2. Chromosome representation for four channels.

Fig. 3. Structural crossover for the modified GA.

Feasible to obtain a strong upper-bound for (12) taking into
account the network interference. In this phase, we sort the
interfering links in decreasing order of the network load values
Li,j . For every link (i, j) in the sorted list, we choose a random
feasible channel that causes link (i, j) to not interfere. If no
such channel exists, the channel assignment for link (i, j)
remains unaltered.

Though the heuristic described above has a worst case
running time of O(|K||E|ln|E|) per iteration, we often find
the solutions to the Lagrangian problem as near feasible
requiring very few manipulations.

V. GENETIC ALGORITHM

The solutions obtained by the Lagrangian relaxation method
may not be competitive for very large networks. In this section,
we propose a modified GA which can obtain good quality
solutions of the channel assignment problem for very large
networks. GAs are population-based stochastic search and
optimization approaches inspired by the mechanism of natural
selection which obeys the rule of “survival of the fittest”
[27]. GAs have been extensively used for solving various
real-world complex optimization problems due to their broad
applicability, ease of use and global perspective [28].

The channel assignment of the graph’s edges is represented
as an ordered non-binary string, y1,y2...y|E| where |E| is the
number of edges on the graph and each yi ∈ {1, 2..K}. Here
yi represents the channel assigned to the ith edge. Figure 2
illustrates a possible assignment scheme for a graph with 10
edges. Since this representation does not ensure the feasibility
of a solution, we modify our encoding scheme as follows.

Algorithm 2 Select-Channel (node i)

Require: L∗ : List of unassigned links (i, j) ∈ I
′

i

C∗ : Channel assignment matrix of links (i, j) ∈ I
′

i

Oi : Ownership Set of links owned by i
Ensure: (mink, e) : Most suitable channel mink for an

unassigned link e.
min ⇐∞
mink ⇐ Default channel
e ⇐ Random link in L∗

for all k ∈ K do
OF (k) =

∑
(i,j)∈Ii−e Yi,jLi,j + Ye(k)Le

if OF (k) < min then
mink ⇐ k
min ⇐ OF (k)

end if
Remove-from-list(L∗, e)

end for

Initially all radios are assumed to be untuned and all
channels unassigned. A link is selected at random and a
random feasible channel k is assigned to it. The channel k
must satisfy one of the following conditions.

• Both transceivers contain a radio that is already tuned to
k.

• One transceiver is already tuned to k while the other still
contains atleast one untuned radio.

• Both transceiver are not tuned to k and both still contain
atleast one untuned radio.

If no such channel exist, the process is restarted.
We propose modified crossover and mutation operators that

are specific to the structure of this problem. While simpler
GA operators exist, they are not constraint satisfying. Other
approaches like [29] to handle constrained optimization prob-
lems with penalty functions use a large number of scaling
factors which require tedious experiments for evaluation.

The mechanism of structural crossover is illustrated by
Figure 3. One parent is called a primary parent while the
other is termed as the secondary parent. A random point is
chosen to break the strings. The channel assignments from
the primary parent are maintained in the child. However,
for the secondary parent, channels are chosen to ensure that
the resulting offspring bears maximum structural similarity
to its parents, in other words, it contains as many common
channels as its secondary parent as possible, while maintaining
feasibility. The roles of the parents are reversed to generate the
second offspring.

For structural mutation, the algorithm generates a random
link (i, j) and switches its channel to another random feasible
channel. If no such channel exists, the channel assignment
is unaltered. Our GA uses roulette wheel selection and the
fitness function used to evaluate the individuals is the same as
the objective function described in (6).



VI. DISTRIBUTED ALGORITHM

In order to solve the channel assignment problem practi-
cally, we propose a fully distributed algorithm based on hill
climbing. Our proposed algorithm requires that each node i
maintains the following information:

• I
′

i : Interference set
⋃

(i,j)∈E Ii,j .
• C∗ : Channel Assignment matrix for all nodes in I

′

i

• X∗ : Radio Usage matrix of all neighbours.
Each node i ∈ V must assign channels to each link incident

on it. To ensure consistent convergence, we define that, each
link (i, j) be owned by either node i or node j depending on
whichever node has a greater cumulative total expected traffic.
We propose a two phase policy for assigning each link. The
first phase, called Select-Channel while the second is a detailed
protocol for assigning each channel chosen by Select-Channel.

The first phase, Select-Channel, as explained by Algorithm
2, is a method by which each node chooses the channel for
each link owned by it, that causes the best improvement in
the local interference. Initially, all channels are assumed to
be unassigned. For each node i, Select-Channel, chooses a
random unassigned link (i, j), owned by i, from Ik

i,j and
assigns a channel k to it based on the following conditions.

• Changing the channel of link (i, j) to k does not violate
the interface constraints at nodes i and j.

• The binding of channel k to the link (i, j) causes the
largest possible decrease in the local objective function.

The second phase of our algorithm describes a detailed
protocol for assigning a channel. For example, if node i ∈ V
wants to tune a link (i, j) owned by it to a channel k, it
sends a Channel-Request message to all its neighbors. Node j
responds with a Channel-Approve message provided the chan-
nel assignment requested by i does not violate the interface
constraints otherwise it sends a Channel-Reject message. If
either response is not received by node i, it waits for a random
period of time before retransmitting.

If the node i receives a Channel-Approve message, it sends
a Channel-Assign message to all members of its interference
set indicating that it is tuning all transmissions over link (i, j)
to channel k. To minimize errors due to packet loss, each of
its neighbours retransmits the packet.

If the node i receives a Channel-Reject message, it elimi-
nates the channel k and chooses another channel that satisfies
the above mentioned conditions. In order to ensure that our
distributed algorithm converges, each link can be assigned a
channel by its owner node only once

Note: In Algorithm 2, Ye(k) = 1, if link e interferes on
channel k.

VII. EXPERIMENTAL RESULTS

We conduct extensive experiments to evaluate the perfor-
mance of our algorithms in large networks. The network
topologies used in our experiments are randomly generated.
The number of channels |K| vary from 3 to 8 while the number
of radios Mi of each node i is a random quantity between 2
and |K|.
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A. Lagrangian Estimates

In this section, we report our results for 10,000 independent
experiments for three different network sizes (N=40, 50, 60).
Since our proposed solutions use randomized approaches,
independent runs of the same experiment can converge to dif-
ferent solutions. Hence, each experiment consists of separate
evaluations of the same topology.

Let ZD(λ∗) denote the minimum upper bound Z* and ZD

the maximum lower bound Zd(λ) in (IV-A). The average
deviation of ZD(λ∗) from ZD for all network sizes was
calculated to be 15.34%. Figure 4 shows a typical plot of
convergence of the two bounds.

Figure 5 explains the effect of the network size on the
quality of the bounds. We observe that for N=40, over 80%
the solutions are within 13% of ZD, and in larger networks
within 17%. This indicates that ZD(λ∗) is consistent and can
serve as a good benchmark for performance evaluation of our
distributed algorithms for this range of network sizes.

Another interesting observation is that the percentage devi-
ation of ZD(λ∗) from ZD steadily increases with the network
size. The average deviation increases from 12.35% for N=40,
to about 16.5% for N=60. Hence for much larger networks,
we expect the genetic algorithms to perform as well as the



Fig. 7. Convergence of the distributed algorithm.

Lagrangian heuristic in providing good quality solutions.

B. Performance Evaluation

The performance evaluation of our algorithms aim at ob-
serving the following quantities

• Deviation of the total interference from ZD(λ∗).
• Scalability of the algorithms for very large network

topologies.
• Channel-wise distribution of the total interference.
To measure the quality of our algorithms, we compare the

total interference calculated by the distributed and genetic
algorithms with ZD((λ∗). We observe that, for over 30,000
experiments, less that 5% of the solutions were better than
the ZD(λ∗), this further emphasizes the quality of these
upper-bounds. Figure illustrates the percentage deviation of
our proposed schema from ZD(λ∗). For N=40, we observe
that over 75% of the solutions are within 5% of ZD((λ∗).
In addition to that almost 10% and 20% of the solutions
for the genetic and distributed algorithms respectively are
within 0.1% of ZD(λ∗). We can clearly observe a trend with
increasing network sizes, i.e N=50 and N=60, the percentage
of solutions for the genetic algorithms within 0.1% of ZD(λ∗)
rises steadily and reaches as high as 18% for the N=60 case.
We expect that the genetic algorithm can outperform even
the Lagrangian heuristics for very large networks of over 300
nodes. We can also observe that the distributed algorithm can
serve as steady accurate and scalable solution to the channel
assignment problem.

Investigating the convergence property can offer good in-
sight into the scalability of the distributed algorithm. We
conduct extensive simulations for very large network sizes. A
typical plot of the convergence of the distributed algorithm
is shown in Figure 7. Here we report the experiments for
10,000 independent runs of three very large networks (N =
50, 100, 150). As mentioned earlier, the algorithm might take
a different number of iterations to converge for independent
runs of the same network topology. We account for this by
running each experiment 10 times. The time factor ∆ is the
number of iterations required for convergence. Figure 8 clearly
indicates that the algorithm converges very quickly even for
very large network sizes thus demonstrating good strength in
scalability.

Fig. 8. Convergence times for the distributed algorithm

One motivation behind our randomized approaches is to
ensure an even channel-wise distribution of the network
interference. This is another important measure of solution
quality. To measure the quality of the solutions in terms of
per-channel interference, we compare our algorithms with an
ideally balanced network. We conduct 1000 different exper-
iments with |K| = 6 and N=50. To eliminate the negative
effects of random radio numbers, we fix Mi = 4 ∀i ∈ V .
Figure 9 clearly illustrates that the deviation from an ideal
channel distribution does not exceed 5% for the distributed as
well as the genetic algorithms. This can be attributed to the
randomized nature of both algorithms.

VIII. CONCLUSIONS AND FUTURE WORK

Exploiting multiple channels can drastically improve
throughput in multi-radio wireless mesh networks. However,
this raises an important channel assignment issue for achieving
efficient channel utilization. In this paper, we have proposed
a load-based scheme for assigning channels to radio inter-
faces in multi-radio, multi-channel wireless mesh networks.
We adopted a graph-theoretic approach and formulated an
ILP model for describing the channel assignment problem
mathematically and proved it to be NP-hard. We then applied
the Lagrangian relaxation method to obtain lower bounds as
well as near-optimal feasible solutions for large size networks.
We also presented a meta-heuristic using a genetic algorithm
which can yield good quality solutions for very large networks.
We further proposed a fully distributed algorithm which allows
us to tackle the channel assignment problem practically. Our
extensive simulation experiments have demonstrated that the
distributed algorithm performs competitively and thus can
serve as a practical and scalable solution to the channel
assignment problem. In our future work, we will extend the
methodologies and algorithms proposed in this paper to ad-
dress a more challenging problem of joint channel assignment
and routing, which is currently under our investigation. We
also plan to conduct a more comprehensive study to evaluate
the performance of our proposed algorithms in a real world
test bed.

APPENDIX

Theorem 1: The channel assignment problem is NP-hard.
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Proof: It is easy to see that the decision version Π of
the channel assignment problem is in the class of NP. This
is because a non-deterministic algorithm needs only to guess
a channel assignment solution binding radios to channels and
check in polynomial time if it satisfies all constraints of the
channel assignment problem.

In order to show that the channel assignment problem is
NP-hard we reduce a specific version of the problem to the
well known problem of graph coloring . Let us assume the
Load Matrix L such that Li,j = 1∀(i, j) ∈ E. We further
assume that the number of radios Mi, is equal to the degree
of each node i ∈ V in the graph G. The interference model
assumed in this proof consists of all adjacent nodes e ∈ Vc

of the conflict graph Gc. Hence, we are required to minimize
the number of nodes in Gc which have at least one color in
common with their neighbors.

Let us assume there exists an algorithm A which can
evaluate f(Gc,K) = m , where m is the minimum number
of nodes in Gc which have at least one color in common with
thier neighbors, in polynomial time. Now we can iteratively
evaluate f(Gc,K + 1) = m

′
, f(Gc,K + 1) = m

′′
and so

on until we get f(Gc,K
∗) = m∗ where m∗ = 0. Clearly K∗

represents the chromatic number χ(Gc). Since A can evaluate
f in polynomial time, the chromatic number, K∗, can also be
evaluated in polynomial time. This is clearly a contradiction
because graph coloring is NP-complete [31].
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