Relaxations for Production Planning Problems with Increasing Byproducts

Srikrishna Sridhar

Computer Sciences University of Wisconsin-Madison http://www.cs.wisc.edu/~srikris/

Joint work with Jeffrey Linderoth and James R. Luedtke

イロン イロン イヨン イヨン 三日

1 / 37

Srikrishna Sridhar (UW-Madison)

Problem Description

Production process involves desirable & undesirable products.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Problem Description

- Production process involves desirable & undesirable products.
- Ratio of byproducts to total production increases monotonically.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Problem Description

- Production process involves desirable & undesirable products.
- Ratio of byproducts to total production increases monotonically.
- Non-convex problem.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Problem Description

- Production process involves desirable & undesirable products.
- Ratio of byproducts to total production increases monotonically.
- Non-convex problem.

Contributions

New discrete time MINLP formulation.

Problem Description

- Production process involves desirable & undesirable products.
- Ratio of byproducts to total production increases monotonically.
- Non-convex problem.

Contributions

- New discrete time MINLP formulation.
- 3 MIP Approximation & Relaxation schemes.

< 白 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problem Description

- Production process involves desirable & undesirable products.
- Ratio of byproducts to total production increases monotonically.
- Non-convex problem.

Contributions

- New discrete time MINLP formulation.
- 3 MIP Approximation & Relaxation schemes.
- Formulation strengthening.

(日) (周) (王) (王) (王)

Problem Description

- Production process involves desirable & undesirable products.
- Ratio of byproducts to total production increases monotonically.
- Non-convex problem.

Contributions

- New discrete time MINLP formulation.
- 3 MIP Approximation & Relaxation schemes.
- Formulation strengthening.

Performance evaluation

(日) (周) (王) (王) (王)

Problem Description

◆□> ◆圖> ◆臣> ◆臣> 三臣 - のへ⊙

Production Process

• The production process creates a mixture of useful products \mathcal{P}^+ and byproducts \mathcal{P}^- .

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ♡

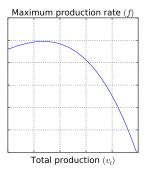
- The production process creates a mixture of useful products \mathcal{P}^+ and byproducts \mathcal{P}^- .
- Decisions span a planning horizon \mathcal{T} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

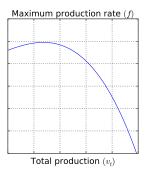
- The production process creates a mixture of useful products \mathcal{P}^+ and byproducts \mathcal{P}^- .
- Decisions span a planning horizon \mathcal{T} .
- Discrete decisions determine the start time of the production process.

- The production process creates a mixture of useful products \mathcal{P}^+ and byproducts \mathcal{P}^- .
- Decisions span a planning horizon \mathcal{T} .
- Discrete decisions determine the start time of the production process.
- Continuous decisions determine the production profile evaluated by production functions $f(\cdot)$ and $g_p(\cdot)$.

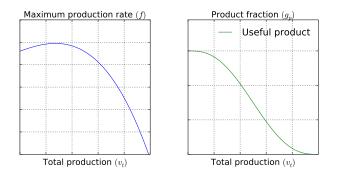
• Production function $f(\cdot)$ is a concave function that determines the maximum production rate as a function of total production.



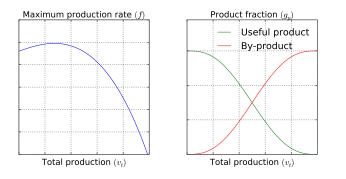
- Production function $f(\cdot)$ is a concave function that determines the maximum production rate as a function of total production.
- ▶ Product fraction functions $g_{\rho}(\cdot)$ evolve monotonically as a function of the total production.



- Production function $f(\cdot)$ is a concave function that determines the maximum production rate as a function of total production.
- ▶ Product fraction functions $g_{\rho}(\cdot)$ evolve monotonically as a function of the total production.



- Production function $f(\cdot)$ is a concave function that determines the maximum production rate as a function of total production.
- ▶ Product fraction functions $g_{\rho}(\cdot)$ evolve monotonically as a function of the total production.



イロン 不良 とうほう 不良 とうほ

Continous time formulation

Cumulative production v(t) is calculated using production rate x(t)

$$v(t) = \int_0^t x(s) \mathrm{d}s$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Continous time formulation

Cumulative production v(t) is calculated using production rate x(t)

$$v(t) = \int_0^t x(s) \mathrm{d}s$$

Mixture production rate is limited by production function $f(\cdot)$

 $x(t) \leq f(v(t))$

Continous time formulation

Cumulative production v(t) is calculated using production rate x(t)

$$v(t) = \int_0^t x(s) \mathrm{d}s$$

Mixture production rate is limited by production function $f(\cdot)$

 $x(t) \leq f(v(t))$

Product production rates $y_p(t)$ calculated by fraction functions $g_p(\cdot)$

 $y_p(t) = x(t) g_p(v(t))$

Srikrishna Sridhar (UW-Madison)

8 / 37

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Cumulative production v(t) is calculated using production rate x(t)

$$v(t) = \int_0^t x(s) \mathrm{d}s$$

Mixture production rate is limited by production function $f(\cdot)$

 $x(t) \leq f(v(t))$

Product production rates $y_p(t)$ calculated by fraction functions $g_p(\cdot)$

 $y_p(t) = x(t) g_p(v(t))$

Production profiles are active only after the start time z(t)

$$v(t) \leq M z(t)$$

Srikrishna Sridhar (UW-Madison)

8 / 37

◆□> ◆圖> ◆臣> ◆臣> 三臣 - のへ⊙

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation (CNT)

$$egin{aligned} &v(t)=\int_{0}^{t}x(s)\mathrm{d}s\ &x(t)\leq f(v(t))\ &y_{p}(t)=x(t)\ g_{p}(v(t))\ &v(t)\leq \mathrm{M}\ &z(t)\ &z(t):\mathcal{T}
ightarrow\{0,1\}, ext{increasing} \end{aligned}$$

Srikrishna Sridhar (UW-Madison)

◆□▶ ◆□▶ ★ □▶ ★ □▶ - □ - つへで

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation (CNT)

$$egin{aligned} &v(t)=\int_{0}^{t}x(s)\mathrm{d}s\ &x(t)\leq f(v(t))\ &y_{p}(t)=x(t)\ g_{p}(v(t))\ &v(t)\leq \mathrm{M}\ &z(t)\ &z(t):\mathcal{T}
ightarrow\{0,1\}, ext{increasing} \end{aligned}$$

Srikrishna Sridhar (UW-Madison)

◆□▶ ◆□▶ ★ □▶ ★ □▶ - □ - つへで

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation (CNT)

$$\begin{aligned} v(t) &= \int_0^t x(s) \mathrm{d}s \\ x(t) &\leq f(v(t)) \\ y_p(t) &= x(t) \ g_p(v(t)) \\ v(t) &\leq \mathsf{M} \ z(t) \end{aligned}$$

 $z(t): \mathcal{T} \rightarrow \{0,1\}, \text{increasing}$

 v_t Cumulative production up to time period $t \in \mathcal{T}$.

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation (CNT)

$$v(t) = \int_0^t x(s) \mathrm{d}s$$

$$x(t) \leq f(v(t))$$

$$y_p(t) = x(t) g_p(v(t))$$

$$v(t) \leq M z(t)$$

 $z(t): \mathcal{T} \rightarrow \{0, 1\}, \text{increasing}$

- v_t Cumulative production up to time period $t \in \mathcal{T}$.
- x_t Mixture production during time period $t \in \mathcal{T}$.

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation (CNT)

$$v(t) = \int_0^t x(s) \mathrm{d}s$$

$$x(t) \leq f(v(t))$$

$$y_p(t) = x(t) g_p(v(t))$$

 $v(t) \leq M \ z(t)$

 $z(t): \mathcal{T} \rightarrow \{0, 1\}, \text{increasing}$

- v_t Cumulative production up to time period $t \in \mathcal{T}$.
- x_t Mixture production during time period $t \in \mathcal{T}$.
- $y_{p,t}$ Product $p \in \mathcal{P}$ production during time period $t \in \mathcal{T}$.

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation (CNT)

$$v(t) = \int_0^t x(s) \mathrm{d}s$$

$$x(t) \leq f(v(t))$$

$$y_p(t) = x(t) g_p(v(t))$$

 $v(t) \leq M z(t)$

 $z(t): \mathcal{T} \rightarrow \{0, 1\}, \text{increasing}$

- v_t Cumulative production up to time period $t \in \mathcal{T}$.
- x_t Mixture production during time period $t \in \mathcal{T}$.
- $y_{p,t}$ Product $p \in \mathcal{P}$ production during time period $t \in \mathcal{T}$.
 - z_t Facility on/off decision variable.

Past models have proposed a natural discretization of this continuous time model.

 \implies

Continuous time formulation (CNT)

Discrete time formulation (F_1)

11 / 37

$$egin{aligned} &v(t)=\int_0^t x(s)\mathrm{d}s\ &x(t)\leq f(v(t))\ &y_{
ho}(t)=x(t)\ g_{
ho}(v(t))\ &v(t)\leq \mathrm{M}\ &z(t)\ &z(t):\mathcal{T}
ightarrow\{0,1\}, ext{increasing} \end{aligned}$$

Srikrishna Sridhar (UW-Madison)

Past models have proposed a natural discretization of this continuous time model.

 \Rightarrow

Continuous time formulation (CNT)

Discrete time formulation (F_1)

$$v_t = \sum_{s=0}^t x_s$$

$$egin{aligned} &v(t)=\int_{0}^{t}x(s)\mathrm{d}s\ &x(t)\leq f(v(t))\ &y_{
ho}(t)=x(t)\;g_{
ho}(v(t))\ &v(t)\leq \mathsf{M}\;z(t)\ &z(t):\mathcal{T}
ightarrow\{0,1\}, ext{increasing} \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Past models have proposed a natural discretization of this continuous time model.

 \rightarrow

Continuous time formulation (CNT)

 $v(t) = \int_0^t x(s) \mathrm{d}s$

Discrete time formulation (F_1)

$$v_t = \sum_{s=0}^t x_s$$

$$x_t \leq \Delta_t f(\mathbf{v}_{t-1})$$

$$egin{aligned} & x(t) \leq f(v(t)) \ & y_{
ho}(t) = \ x(t) \ g_{
ho}(v(t)) \ & v(t) \leq \mathsf{M} \ z(t) \ & z(t) : \mathcal{T} o \{0,1\}, ext{increasing} \end{aligned}$$

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation (CNT)

Discrete time formulation (F_1)

$$v(t) = \int_{0}^{t} x(s) ds \qquad v_{t} = \sum_{s=0}^{t} x_{s}$$
$$x(t) \le f(v(t)) \qquad \Longrightarrow \qquad x_{t} \le \Delta_{t} f(v_{t-1})$$
$$y_{p}(t) = x(t) g_{p}(v(t)) \qquad y_{p,t} = x_{t} g_{p}(v_{t-1})$$
$$v(t) \le M z(t)$$

 $z(t): \mathcal{T} \rightarrow \{0,1\},$ increasing

Srikrishna Sridhar (UW-Madison)

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation (CNT)

Discrete time formulation (F_1)

$$\begin{split} v(t) &= \int_0^t x(s) \mathrm{d}s & v_t = \sum_{s=0}^t x_s \\ x(t) &\leq f(v(t)) & \Longrightarrow & x_t \leq \Delta_t f(v_{t-1}) \\ y_p(t) &= x(t) \ g_p(v(t)) & y_{p,t} = \ x_t \ g_p(v_{t-1}) \\ v(t) &\leq \mathsf{M} \ z(t) & v_t \leq \mathsf{M} \ z_t \end{split}$$

 $z(t): \mathcal{T} \rightarrow \{0,1\},$ increasing

Past models have proposed a natural discretization of this continuous time model.

Continuous time formulation (CNT)

Discrete time formulation (F_1)

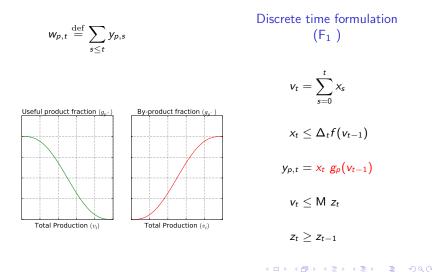
$$\begin{aligned} \mathbf{v}(t) &= \int_0^t \mathbf{x}(s) \mathrm{d}s & \mathbf{v}_t = \sum_{s=0}^t \mathbf{x}_s \\ \mathbf{x}(t) &\leq f(\mathbf{v}(t)) & \Longrightarrow & \mathbf{x}_t \leq \Delta_t f(\mathbf{v}_{t-1}) \\ \mathbf{y}_p(t) &= \mathbf{x}(t) \ g_p(\mathbf{v}(t)) & \mathbf{y}_{p,t} = \mathbf{x}_t \ g_p(\mathbf{v}_{t-1}) \\ \mathbf{v}(t) &\leq \mathsf{M} \ \mathbf{z}(t) & \mathbf{v}_t \leq \mathsf{M} \ \mathbf{z}_t \\ \mathbf{z}(t) : \mathcal{T} \to \{0, 1\}, \text{ increasing} & \mathbf{z}_t \geq \mathbf{z}_{t-1} \end{aligned}$$

F_1 formulation

How much product is produced up to time t?

F_1 formulation

How much product is produced up to time t?



Srikrishna Sridhar (UW-Madison)

F_1 formulation

How much product is produced up to time t?

$$w_{p,t} \stackrel{\text{def}}{=} \sum_{s \le t} y_{p,s}$$
$$= \sum_{s \le t} x_s g_p(v_{s-1})$$

Useful product fraction (g_{y^-}) Total Production (v_t) By-product fraction (g_{y^-}) By-product fraction (g_{y^-}) By-product fraction (w_t) Discrete time formulation (F_1)

$$v_t = \sum_{s=0}^t x_s$$

$$x_t \leq \Delta_t f(v_{t-1})$$

$$y_{p,t} = x_t g_p(v_{t-1})$$

 $v_t \leq M z_t$

$$z_t \geq z_{t-1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Srikrishna Sridhar (UW-Madison)

12 / 37

F_1 formulation

How much product is produced up to time t?

$$w_{p,t} \stackrel{\text{def}}{=} \sum_{s \le t} y_{p,s}$$
$$= \sum_{s \le t} x_s g_p(v_{s-1})$$

Useful product fraction (g_{y_c}) By-product fraction $(g_{y_c$ Discrete time formulation (F_1)

$$v_t = \sum_{s=0}^t x_s$$

$$x_t \leq \Delta_t f(v_{t-1})$$

$$y_{p,t} = x_t g_p(v_{t-1})$$

 $v_t \leq M z_t$

 $z_t \geq z_{t-1}$

13 / 37

Can we do better?

Can we do better?

Can we calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t ?

イロン イロン イヨン イヨン 三日

Can we do better?

Can we calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t ?

Continuous time formulation (CNT)

$$v(t) = \int_0^t x(s) \mathrm{d}s$$

$$egin{aligned} & x(t) \leq f(v(t)) \ & y_{
ho}(t) = & x(t) \; g_{
ho}(v(t)) \end{aligned}$$

 $v(t) \leq M z(t)$

$$z(t): \mathcal{T} \rightarrow \{0,1\}, \mathsf{inc}$$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ = うへで 14 / 37

Can we do better?

Can we calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t ?

$$w_{p,t} = \int_0^t y_p(s) \mathrm{d}s$$

Continuous time formulation (CNT)

$$v(t) = \int_0^t x(s) \mathrm{d}s$$

$$egin{aligned} & x(t) \leq f(v(t)) \ & y_{p}(t) = \ x(t) \ g_{p}(v(t)) \ & v(t) \leq \mathsf{M} \ z(t) \ & z(t) : \mathcal{T}
ightarrow \{0,1\}, ext{inc} \end{aligned}$$

イロン イロン イヨン イヨン 三日

Can we do better?

Can we calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t ?

$$\begin{split} w_{\rho,t} &= \int_0^t y_\rho(s) \mathrm{d}s \\ &= \int_0^t x(s) \; g_\rho(v(s)) \mathrm{d}s \end{split}$$

Continuous time formulation (CNT)

$$v(t) = \int_0^t x(s) \mathrm{d}s$$

$$x(t) \leq f(v(t))$$

 $y_p(t) = x(t) g_p(v(t))$ $v(t) \le M z(t)$ $z(t) : \mathcal{T} \to \{0, 1\}, \text{inc}$

Can we do better?

Can we calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t ?

$$w_{p,t} = \int_0^t y_p(s) ds$$
$$= \int_0^t x(s) g_p(v(s)) ds$$
$$= \int_0^{v_t} g_p(v) dv$$

Continuous time formulation (CNT)

$$v(t) = \int_0^t x(s) \mathrm{d}s$$

$$\begin{aligned} x(t) &\leq f(v(t)) \\ y_p(t) &= x(t) \ g_p(v(t)) \\ v(t) &\leq \mathsf{M} \ z(t) \end{aligned}$$

 $z(t): \mathcal{T} \rightarrow \{0,1\}, \mathsf{inc}$

Can we do better?

Can we calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t ?

$$\begin{split} w_{p,t} &= \int_0^t y_p(s) \mathrm{d}s \\ &= \int_0^t x(s) \; g_p(v(s)) \mathrm{d}s \\ &= \int_0^{v_t} g_p(v) \mathrm{d}v \\ &\stackrel{\mathrm{def}}{=} h_p(v_t) \end{split}$$

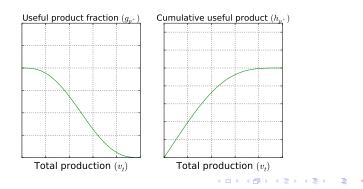
Continuous time formulation (CNT)

$$v(t) = \int_0^t x(s) \mathrm{d}s$$

$$egin{aligned} & x(t) \leq f(v(t)) \ & y_{
ho}(t) = \ x(t) \ g_{
ho}(v(t)) \ & v(t) \leq \mathsf{M} \ z(t) \end{aligned}$$

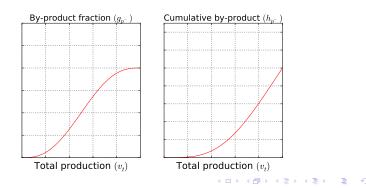
 $z(t): \mathcal{T} \rightarrow \{0,1\}, \mathsf{inc}$

Integral of a non-increasing function is concave.



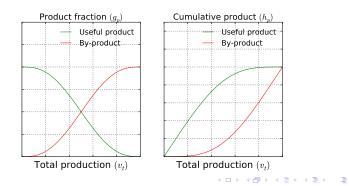
Key Idea

- Integral of a non-increasing function is concave.
- Integral of a non-decreasing function is convex.



Key Idea

- Integral of a non-increasing function is concave.
- Integral of a non-decreasing function is convex.
- Lets deal with h_p instead of g_p!



What have we done so far ?

Formulation F_1

$$v_t = \sum_{s=0}^{t} x_s$$

$$x_t \le \Delta_t f(v_{t-1})$$

$$y_{p,t} = x_t g_p(v_{t-1})$$

$$v_t \le M z_t$$

$$z_t \ge z_{t-1}$$

Srikrishna Sridhar (UW-Madison)

18 / 37

What have we done so far ?

Formulation F₁

Formulation F_2

$$v_t = \sum_{s=0}^t x_s \qquad \qquad v_t = \sum_{s=0}^t x_s$$

$$x_t \leq \Delta_t f(v_{t-1})$$

`

 $y_{p,t} = x_t g_p(v_{t-1})$

 $v_t \leq M \ z_t$

$$z_t \geq z_{t-1}$$

Srikrishna Sridhar (UW-Madison)

What have we done so far ?

Formulation F₁

Formulation F_2

$$\begin{aligned} v_t &= \sum_{s=0}^t x_s \\ x_t &\leq \Delta_t f(v_{t-1}) \end{aligned} \qquad \qquad v_t &= \sum_{s=0}^t x_s \\ x_t &\leq \Delta_t f(v_{t-1}) \end{aligned}$$

 $y_{p,t} = x_t g_p(v_{t-1})$

 $v_t \leq M \ z_t$

$$z_t \geq z_{t-1}$$

Srikrishna Sridhar (UW-Madison)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

What have we done so far ?

Formulation F₁ Formulation F₂ $v_t = \sum_{s=0}^t x_s$ $v_t = \sum_{s=0}^t x_s$ $x_t < \Delta_t f(v_{t-1})$ $x_t < \Delta_t f(v_{t-1})$ $y_{p,t} = h_p(v_t) - h_p(v_{t-1})$ $y_{p,t} = x_t g_p(v_{t-1})$ $v_t < M z_t$

 $z_t \geq z_{t-1}$

Srikrishna Sridhar (UW-Madison)

18 / 37

What have we done so far ?

Formulation F₁ Formulation F₂ $v_t = \sum_{s=0}^t x_s$ $v_t = \sum_{s=0}^t x_s$ $x_t < \Delta_t f(v_{t-1})$ $x_t < \Delta_t f(v_{t-1})$ $y_{p,t} = x_t g_p(v_{t-1})$ $y_{p,t} = h_p(v_t) - h_p(v_{t-1})$ $v_t < M z_t$ $v_t < M z_t$ $z_t > z_{t-1}$

Srikrishna Sridhar (UW-Madison)

イロン イロン イヨン イヨン 三日 二

What have we done so far ?

Formulation F₁ Formulation F₂ $v_t = \sum_{s=0}^t x_s$ $v_t = \sum_{s=0}^t x_s$ $x_t < \Delta_t f(v_{t-1})$ $x_t < \Delta_t f(v_{t-1})$ $y_{p,t} = x_t g_p(v_{t-1})$ $y_{p,t} = h_p(v_t) - h_p(v_{t-1})$ $v_t < M z_t$ $v_t < M z_t$ $z_t > z_{t-1}$ $z_t \geq z_{t-1}$

Srikrishna Sridhar (UW-Madison)

18 / 37

イロン イロン イヨン イヨン 三日 二

Comparing Formulations Which formulation is better?

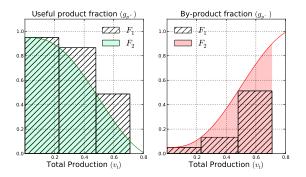
Formulation F_1	Formulation F_2
$v_t = \sum_{s=0}^t x_s$	$v_t = \sum_{s=0}^t x_s$
$x_t \leq \Delta_t f(v_{t-1})$	$x_t \leq \Delta_t f(v_{t-1})$
$y_{p,t} = x_t g_p(v_{t-1})$	$y_{p,t} = h_p(v_t) - h_p(v_{t-1})$
$v_t \leq M z_t$	$v_t \leq M \ z_t$
$z_t \geq z_{t-1}$	$z_t \ge z_{t-1}$

Srikrishna Sridhar (UW-Madison)

19 / 37

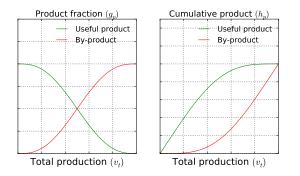
Which formulation is better?

 \blacktriangleright F_2 is a more accurate formulation of CNT than F_1 .



Which formulation is better?

- \blacktriangleright F_2 is a more accurate formulation of CNT than F_1 .
- F₂ is computationally better because it deals with convex functions while F₁ deals with bilinear terms.



イロン イロン イヨン イヨン 三日

MIP Approximation & Relaxations

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ⊙

Mixed Integer Non-Linear Programs (MINLP)

... are slow and hard!

イロト イロト イヨト イヨト 二日

Mixed Integer Non-Linear Programs (MINLP)

... are slow and hard!

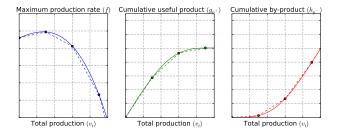
But...there is hope

We only need to approximate or relax univariate convex and concave functions.

イロン イロン イヨン イヨン 三日

Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations.

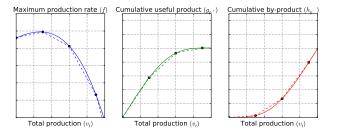


22 / 37

Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations.

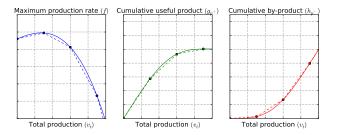
- Pros
 - Close' to a feasible solution of the MINLP formulation.



Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations.

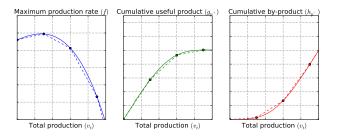
- Pros
 - 'Close' to a feasible solution of the MINLP formulation.
- Cons
 - Introduces additional SOS2 variables to branch on.



Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations.

- Pros
 - 'Close' to a feasible solution of the MINLP formulation.
- Cons
 - Introduces additional SOS2 variables to branch on.
 - NOT a relaxation of the original formulation.



イロト 不得 とくまと くまとう き

Piecewise Linear Approximation (PLA)

イロト イロト イヨト イヨト 二日

$v_t = \sum_{s=0}^t x_s$

Formulation F_2

$$v_t = \sum_{s=0}^t x_s$$

Formulation F_2

$$v_t = \sum_{s=0}^t x_s$$

$$x_t \leq \Delta_t f(v_{t-1})$$

$$\begin{aligned} \mathsf{v}_t &= \sum_{s=0}^t x_s \\ \mathsf{v}_t &= \sum_{o \in \mathcal{O}} B_o \ \lambda_{t,o} \\ \mathsf{x}_t &\leq \Delta_t \sum_{o} \mathsf{F}_o \ \lambda_{t,o} \end{aligned}$$

 $o \in O$

イロト イロト イヨト イヨト 二日

Srikrishna Sridhar (UW-Madison)

Formulation F_2

$$v_t = \sum_{s=0}^t x_s$$

$$x_t \leq \Delta_t f(v_{t-1})$$

 $y_{p,t} = \frac{h_p(v_t) - h_p(v_{t-1})}{h_p(v_{t-1})}$

Piecewise Linear Approximation
(PLA)

$$v_t = \sum_{s=0}^{t} x_s$$

 $v_t = \sum_{o \in \mathcal{O}} B_o \ \lambda_{t,o}$
 $x_t \le \Delta_t \sum_{o \in \mathcal{O}} F_o \ \lambda_{t,o}$
 $y_{p,t} = w_{p,t} - w_{p,t-1}$
 $w_{p,t} = \sum_{o \in \mathcal{O}} H_{p,o} \ \lambda_{t,o}$

イロト イロト イヨト イヨト 二日

Srikrishna Sridhar (UW-Madison)

Formulation F_2

$$v_t = \sum_{s=0}^t x_s$$

$$x_t \leq \Delta_t f(v_{t-1})$$

$$y_{p,t} = \frac{h_p(v_t) - h_p(v_{t-1})}{h_p(v_{t-1})}$$

 $v_t \leq M z_t$

$$z_t \geq z_{t-1}$$

Piecewise Linear Approximation
(PLA)

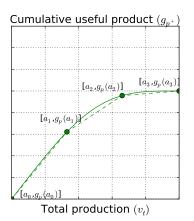
$$v_t = \sum_{s=0}^{t} x_s$$

 $v_t = \sum_{o \in \mathcal{O}} B_o \ \lambda_{t,o}$
 $x_t \le \Delta_t \sum_{o \in \mathcal{O}} F_o \ \lambda_{t,o}$
 $y_{p,t} = w_{p,t} - w_{p,t-1}$
 $w_{p,t} = \sum_{o \in \mathcal{O}} H_{p,o} \ \lambda_{t,o}$
 $v_t \le M \ z_t$
 $z_t \ge z_{t-1}$
 $1 = \sum_{o \in \mathcal{O}} \lambda_{t,o}$

 $\{\lambda_{t,o}|o \in \mathcal{O}\} \in \mathsf{S0S2}$

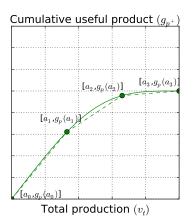
イロト イロト イヨト イヨト 二日

Srikrishna Sridhar (UW-Madison)



Approximating $g_p(v_t)$

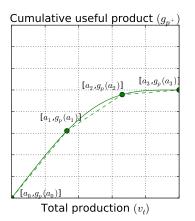
$$g_{p}(v_{t}) pprox \sum_{o \in \mathcal{O}} \lambda_{t,o} g_{p}(a_{o})$$



Approximating $g_p(v_t)$

$$g_p(\mathbf{v}_t) pprox \sum_{o \in \mathcal{O}} \lambda_{t,o} g_p(\mathbf{a}_o)$$

 $1 = \sum_{o \in \mathcal{O}} \lambda_{t,o}$

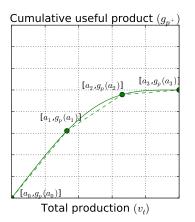


Approximating $g_p(v_t)$

$$g_p(\mathbf{v}_t) pprox \sum_{o \in \mathcal{O}} \lambda_{t,o} g_p(\mathbf{a}_o)$$

 $1 = \sum_{o \in \mathcal{O}} \lambda_{t,o}$

Structure: Only two adjacent non zeros.



Approximating $g_p(v_t)$

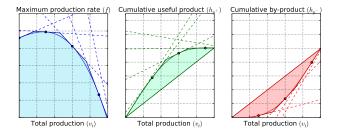
$$egin{aligned} g_{p}(\mathbf{v}_{t}) &\approx \sum_{o \in \mathcal{O}} \lambda_{t,o} g_{p}(\mathbf{a}_{o}) \ &1 &= \sum_{o \in \mathcal{O}} \lambda_{t,o} \end{aligned}$$

Structure: Only two adjacent non zeros.

$$\{\lambda_{t,o}|o \in \mathcal{O}\} \in \mathsf{S0S2}$$

Secant Relaxation (1-SEC)

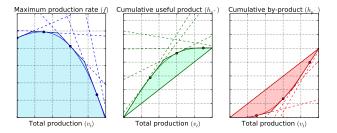
Relax all the nonlinear production functions using inner and outer approximations.



Secant Relaxation (1-SEC)

Relax all the nonlinear production functions using inner and outer approximations.

- Pros
 - Relaxation of the original formulation.

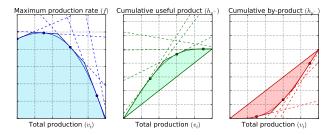


Secant Relaxation (1-SEC)

Relax all the nonlinear production functions using inner and outer approximations.

Pros

- Relaxation of the original formulation.
- Does NOT introduce additional SOS2 variables.
- Cons
 - May not be 'close' to a feasible solution of the MINLP formulation.



Secant Relaxation (1-SEC)

$$v_t = \sum_{s=0}^t x_s$$

Formulation F₂

$$v_t = \sum_{s=0}^t x_s$$

 $x_t \leq \Delta_t f(v_{t-1})$

Srikrishna Sridhar (UW-Madison)

26 / 37

Secant Relaxation (1-SEC)

Formulation F₂

$$v_t = \sum_{s=0}^t x_s$$

 $x_t \leq \Delta_t f(v_{t-1})$

$$\begin{aligned} \mathsf{v}_t &= \sum_{s=0}^t x_s \\ \mathsf{v}_t &= \sum_{o \in \mathcal{O}} \hat{\mathsf{B}}_o \ \lambda_{t,o} \\ x_t &\leq \Delta_t \sum \hat{\mathsf{F}}_o \ \lambda_{t,o} \end{aligned}$$

 $\overline{o \in \mathcal{O}}$

Srikrishna Sridhar (UW-Madison)

26 / 37

Formulation F₂

$$v_t = \sum_{s=0}^t x_s$$

 $x_t \leq \Delta_t f(v_{t-1})$

$$y_{p,t} = \frac{h_p(v_t) - h_p(v_{t-1})}{h_p(v_{t-1})}$$

Secant Relaxation (1-SEC)

$$v_{t} = \sum_{s=0}^{t} x_{s}$$

$$v_{t} = \sum_{o \in \mathcal{O}} \hat{B}_{o} \lambda_{t,o}$$

$$x_{t} \leq \Delta_{t} \sum_{o \in \mathcal{O}} \hat{F}_{o} \lambda_{t,o}$$

$$y_{p,t} = w_{p,t} - w_{p,t-1}$$

$$w_{p,t} = \sum_{o \in \mathcal{O}} \hat{H}_{p,o} \lambda_{t,o}$$

Srikrishna Sridhar (UW-Madison)

26 / 37

Formulation F₂

$$v_t = \sum_{s=0}^t x_s$$

 $x_t \leq \Delta_t f(v_{t-1})$

$$y_{p,t} = \frac{h_p(v_t) - h_p(v_{t-1})}{v_t \le M \ z_t}$$
$$z_t > z_{t-1}$$

Secant Relaxation (1-SEC)

$$v_{t} = \sum_{s=0}^{t} x_{s}$$

$$v_{t} = \sum_{o \in \mathcal{O}} \hat{B}_{o} \lambda_{t,o}$$

$$x_{t} \leq \Delta_{t} \sum_{o \in \mathcal{O}} \hat{F}_{o} \lambda_{t,o}$$

$$y_{p,t} = w_{p,t} - w_{p,t-1}$$

$$w_{p,t} = \sum_{o \in \mathcal{O}} \hat{H}_{p,o} \lambda_{t,o}$$

$$v_{t} \leq M z_{t}$$

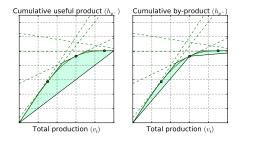
$$z_{t} \geq z_{t-1}$$

$$1 = \sum_{o \in \mathcal{O}} \lambda_{t,o}$$

Srikrishna Sridhar (UW-Madison)

Multiple Secant Relaxation (k-SEC)

Relax all the nonlinear production functions using inner and outer approximations but use multiple secants instead of a just a single one.

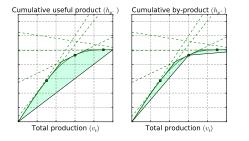


Multiple Secant Relaxation (k-SEC)

Relax all the nonlinear production functions using inner and outer approximations but use multiple secants instead of a just a single one.

Pros

- 'Close' to a feasible solution of the MINLP formulation.
- Relaxation of the original formulation.



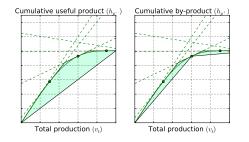
Multiple Secant Relaxation (k-SEC)

Relax all the nonlinear production functions using inner and outer approximations but use multiple secants instead of a just a single one.

Pros

- 'Close' to a feasible solution of the MINLP formulation.
- Relaxation of the original formulation.

Cons



Multiple Secant Relaxation (k-SEC)

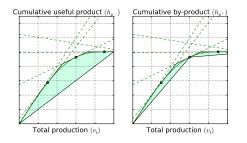
Relax all the nonlinear production functions using inner and outer approximations but use multiple secants instead of a just a single one.

Pros

- 'Close' to a feasible solution of the MINLP formulation.
- Relaxation of the original formulation.

Cons

Introduces additional SOS2 variables to branch on.



Multiple Secant Relaxation (k-SEC)

$$v_t = \sum_{s=0}^t x_s = \sum_{o \in \mathcal{O}} \hat{\mathsf{B}}_o \ \lambda_{t,o}$$

Formulation F_2

$$v_t = \sum_{s=0}^t x_s$$

$$x_t \leq \Delta_t f(v_{t-1})$$

Srikrishna Sridhar (UW-Madison)

Multiple Secant Relaxation (k-SEC)

$$v_t = \sum_{s=0}^t x_s = \sum_{o \in \mathcal{O}} \hat{\mathsf{B}}_o \ \lambda_{t,o}$$

 $v_t = \sum_{s=0}^t x_s$

 $x_t \leq \Delta_t f(v_{t-1})$

 $y_{p,t} = h_p(v_t) - h_p(v_{t-1})$

Formulation F₂

$$v_t = \sum_{s=0}^t x_s$$

$$x_t \leq \Delta_t f(v_{t-1})$$

$$y_{p,t} = h_p(v_t) - h_p(v_{t-1})$$

 $v_t \leq M z_t$

 $z_t \geq z_{t-1}$

Multiple Secant Relaxation (k-SEC)

$$v_{t} = \sum_{s=0}^{t} x_{s} = \sum_{o \in \mathcal{O}} \hat{B}_{o} \lambda_{t,o}$$
$$y_{p,t} = w_{p,t} - w_{p,t-1}$$
$$\sum_{o \in \mathcal{O}} H_{p,o} \lambda_{t,o} \le w_{p,t} \le \sum_{o \in \mathcal{O}} \hat{H}_{p,o} \lambda_{t,o} \quad \forall p \in \mathcal{P}^{+}$$
$$\sum_{o \in \mathcal{O}} \hat{H}_{p,o} \lambda_{t,o} \le w_{p,t} \le \sum_{o \in \mathcal{O}} H_{p,o} \lambda_{t,o} \quad \forall p \in \mathcal{P}^{-}$$

Srikrishna Sridhar (UW-Madison)

28 / 37

Formulation F_2

$$v_t = \sum_{s=0}^t x_s$$

 $x_t \leq \Delta_t f(v_{t-1})$

$$y_{p,t} = h_p(v_t) - h_p(v_{t-1})$$

 $v_t \leq M \ z_t$

 $z_t \geq z_{t-1}$

Multiple Secant Relaxation (k-SEC)

$$v_{t} = \sum_{s=0}^{t} x_{s} = \sum_{o \in \mathcal{O}} \hat{B}_{o} \lambda_{t,o}$$

$$y_{\rho,t} = w_{\rho,t} - w_{\rho,t-1}$$

$$\sum_{o \in \mathcal{O}} H_{\rho,o} \lambda_{t,o} \leq w_{\rho,t} \leq \sum_{o \in \mathcal{O}} \hat{H}_{\rho,o} \lambda_{t,o} \quad \forall p \in \mathcal{P}^{+}$$

$$\sum_{o \in \mathcal{O}} \hat{H}_{\rho,o} \lambda_{t,o} \leq w_{\rho,t} \leq \sum_{o \in \mathcal{O}} H_{\rho,o} \lambda_{t,o} \quad \forall p \in \mathcal{P}^{-}$$

$$v_{t} \leq M \ z_{t}$$

$$z_{t} \geq z_{t-1}$$

$$1 = \sum_{o \in \mathcal{O}} \lambda_{t,o}$$

$$\{\lambda_{t,o} | o \in \mathcal{O}\} \in S0S2$$

イロン イロン イヨン イヨン 三日

Trix SOS2/Hull binary trick

Key Idea

- Production functions are positive only if the facility is open.
- Applies to the 1-SEC, PLA & k-SEC model.

Key Idea

- Production functions are positive only if the facility is open.
- Applies to the 1-SEC, PLA & k-SEC model.

Original Formulation...

$$v_{t} = \sum_{o \in \mathcal{O}} B_{o} \lambda_{t,o}$$
$$w_{p,t} = \sum_{o \in \mathcal{O}} H_{p,o} \lambda_{t,o}$$
$$1 = \sum_{o \in \mathcal{O}} \lambda_{t,o}$$
$$v_{t} \leq Mz_{t}$$

Srikrishna Sridhar (UW-Madison)

Key Idea

- Production functions are positive only if the facility is open.
- Applies to the 1-SEC, PLA & k-SEC model.

Original Formulation...

$$v_{t} = \sum_{o \in \mathcal{O}} B_{o} \lambda_{t,o}$$
$$w_{p,t} = \sum_{o \in \mathcal{O}} H_{p,o} \lambda_{t,o}$$
$$1 = \sum_{o \in \mathcal{O}} \lambda_{t,o}$$
$$v_{t} \leq Mz_{t}$$

Stronger Formulation...

$$v_{t} = \sum_{o \in \mathcal{O}} B_{o} \lambda_{t,o}$$
$$w_{p,t} = \sum_{o \in \mathcal{O}} H_{p,o} \lambda_{t,o}$$
$$z_{t} = \sum_{o \in \mathcal{O}} \lambda_{t,o}$$

Experiments

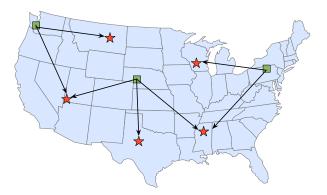
Goals

- Impact on formulation accuracy in going from F₁ to F₂
- ▶ Impact in solution time in going from F₁ to F₂ as solved by our models.
- Impact of stronger formulations on solving the MIP approximation/relaxations.

Sample Application

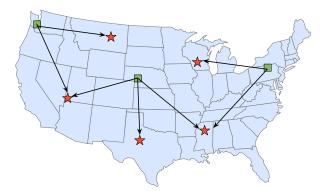
Transportation problem with production facilities manufacturing products for customers.

• Transportation problem with production facilities \mathcal{I} manufacturing products \mathcal{P}^+ for customers \mathcal{J} .

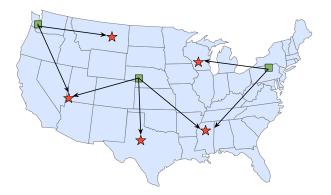


イロト イポト イヨト イヨト 一日

- ► Transportation problem with production facilities *I* manufacturing products *P*⁺ for customers *J*.
- Demand made by customers are known a priori.

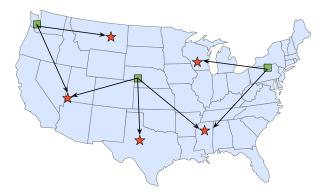


- Transportation problem with production facilities *I* manufacturing products *P*⁺ for customers *J*.
- Demand made by customers are known a priori.
- Facility operations follow known production functions.

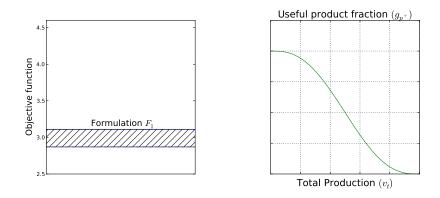


э

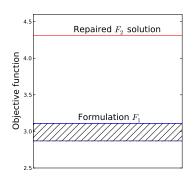
- Transportation problem with production facilities *I* manufacturing products *P*⁺ for customers *J*.
- Demand made by customers are known a priori.
- Facility operations follow known production functions.
- ► Facilities incur fixed, operating, transportation and penalty costs.

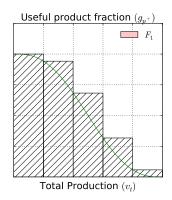


Accuracy



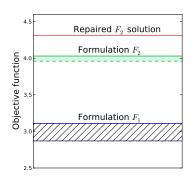
Accuracy

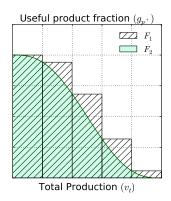




イロト イロト イヨト イヨト 二日

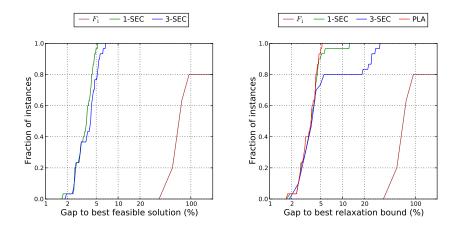
Accuracy





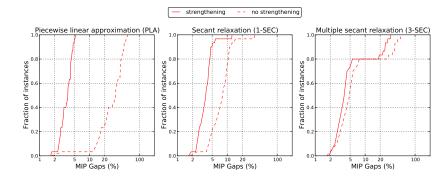
イロト イロト イヨト イヨト 二日

Formulations



Srikrishna Sridhar (UW-Madison)

Trix



35 / 37

Problem Description

► Defined a non-convex production process involving desirable & undesirable products.

Problem Description

- ▶ Defined a non-convex production process involving desirable & undesirable products.
- Ratio of byproducts to total production increases monotonically.

Problem Description

- Defined a non-convex production process involving desirable & undesirable products.
- Ratio of byproducts to total production increases monotonically.

Methods

• Reformulated an existing formulation (F_1) to produce a more accurate formulation (F_2) based on the cumulative product production function.

Problem Description

- Defined a non-convex production process involving desirable & undesirable products.
- Ratio of byproducts to total production increases monotonically.

Methods

- Reformulated an existing formulation (F_1) to produce a more accurate formulation (F_2) based on the cumulative product production function.
- Devised scalable MIP approximations & relaxations (PLA, 1-SEC, k-SEC).

Problem Description

- Defined a non-convex production process involving desirable & undesirable products.
- Ratio of byproducts to total production increases monotonically.

Methods

- Reformulated an existing formulation (F_1) to produce a more accurate formulation (F_2) based on the cumulative product production function.
- Devised scalable MIP approximations & relaxations (PLA, 1-SEC, k-SEC).

Conclusions

Problem Description

- Defined a non-convex production process involving desirable & undesirable products.
- Ratio of byproducts to total production increases monotonically.

Methods

- Reformulated an existing formulation (F_1) to produce a more accurate formulation (F_2) based on the cumulative product production function.
- Devised scalable MIP approximations & relaxations (PLA, 1-SEC, k-SEC).

Conclusions

F₂ formulation is a more accurate evaluation of operations as compared to F₁.

Problem Description

- Defined a non-convex production process involving desirable & undesirable products.
- Ratio of byproducts to total production increases monotonically.

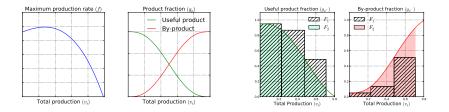
Methods

- Reformulated an existing formulation (F_1) to produce a more accurate formulation (F_2) based on the cumulative product production function.
- Devised scalable MIP approximations & relaxations (PLA, 1-SEC, k-SEC).

Conclusions

- F₂ formulation is a more accurate evaluation of operations as compared to F₁.
- F₂ is computationally more tractable than F₁.

Thats all folks!



37 / 37